Relations

X a set. A relation on X is a property which may or may not hold for each ordered pair of elements of X.

Relations

X a set. A relation on X is a property which may or may not hold for each ordered pair of elements of X.

Think of a relation as a symbol which goes between two elements of X to make a statement.

Relations

X a set. A relation on X is a property which may or may not hold for each ordered pair of elements of X.

Think of a relation as a symbol which goes between two elements of X to make a statement.

Examples:

Relations

X a set. A relation on X is a property which may or may not hold for each ordered pair of elements of X.

Think of a relation as a symbol which goes between two elements of X to make a statement.

Examples:

- $<$ is a relation on \mathbb{R}

Relations

X a set. A relation on X is a property which may or may not hold for each ordered pair of elements of X.

Think of a relation as a symbol which goes between two elements of X to make a statement.

Examples:

- <is a relation on \mathbb{R} : for $a, b \in \mathbb{R}$ we have a statement $a<b$ which is either true or false.

Relations

X a set. A relation on X is a property which may or may not hold for each ordered pair of elements of X.

Think of a relation as a symbol which goes between two elements of X to make a statement.

Examples:

- <is a relation on \mathbb{R} : for $a, b \in \mathbb{R}$ we have a statement $a<b$ which is either true or false.
- | is a relation on \mathbb{N}.

Relations

X a set. A relation on X is a property which may or may not hold for each ordered pair of elements of X.

Think of a relation as a symbol which goes between two elements of X to make a statement.

Examples:

- <is a relation on \mathbb{R} : for $a, b \in \mathbb{R}$ we have a statement $a<b$ which is either true or false.
- | is a relation on \mathbb{N}.
- \subseteq is a relation on any set of sets.

Relations

X a set. A relation on X is a property which may or may not hold for each ordered pair of elements of X.

Think of a relation as a symbol which goes between two elements of X to make a statement.

Examples:

- <is a relation on \mathbb{R} : for $a, b \in \mathbb{R}$ we have a statement $a<b$ which is either true or false.
- | is a relation on \mathbb{N}.
- \subseteq is a relation on any set of sets.
- "loves" is a relation on the set of all people.

Relations

X a set. A relation on X is a property which may or may not hold for each ordered pair of elements of X.

Think of a relation as a symbol which goes between two elements of X to make a statement.

Examples:

- <is a relation on \mathbb{R} : for $a, b \in \mathbb{R}$ we have a statement $a<b$ which is either true or false.
- | is a relation on \mathbb{N}.
- \subseteq is a relation on any set of sets.
- "loves" is a relation on the set of all people.
- = is a relation on any set.

Relations

X a set. A relation on X is a property which may or may not hold for each ordered pair of elements of X.

Think of a relation as a symbol which goes between two elements of X to make a statement.

Examples:

- <is a relation on \mathbb{R} : for $a, b \in \mathbb{R}$ we have a statement $a<b$ which is either true or false.
- | is a relation on \mathbb{N}.
- \subseteq is a relation on any set of sets.
- "loves" is a relation on the set of all people.
- \neq is a relation on any set.

Properties of relations

Properties of relations

R a relation on $X . R$ is:

Properties of relations

R a relation on $X . R$ is:

- reflexive if $a R$ for all $a \in X$;

Properties of relations

R a relation on $X . R$ is:

- reflexive if a R a for all $a \in X$;
- symmetric if $a R b$ implies $b R$ a, for $a, b \in X$;

Properties of relations

R a relation on $X . R$ is:

- reflexive if $a R$ for all $a \in X$;
- symmetric if a $R b$ implies $b R$, for $a, b \in X$;
- anti-symmetric if $a R b R$ implies $a=b$, for $a, b \in X$;

Properties of relations

R a relation on $X . R$ is:

- reflexive if $a R$ for all $a \in X$;
- symmetric if $a R b$ implies $b R a$, for $a, b \in X$;
- anti-symmetric if $a R b R$ implies $a=b$, for $a, b \in X$;
- transitive if $a R b R c$ implies $a R c$, for $a, b, c \in X$.

Properties of relations

R a relation on $X . R$ is:

- reflexive if $a R$ for all $a \in X$;
- symmetric if a $R b$ implies $b R$, for $a, b \in X$;
- anti-symmetric if $a R b R$ implies $a=b$, for $a, b \in X$;
- transitive if $a R b R c$ implies $a R c$, for $a, b, c \in X$.

Example:

The relation \geqslant on \mathbb{R} is:

Properties of relations

R a relation on $X . R$ is:

- reflexive if $a R$ for all $a \in X$;
- symmetric if a $R b$ implies $b R$, for $a, b \in X$;
- anti-symmetric if $a R b R$ implies $a=b$, for $a, b \in X$;
- transitive if $a R b R c$ implies $a R c$, for $a, b, c \in X$.

Example:

The relation \geqslant on \mathbb{R} is:

- reflexive: $a \geqslant a$ for every a;

Properties of relations

R a relation on $X . R$ is:

- reflexive if $a R$ for all $a \in X$;
- symmetric if a $R b$ implies $b R$, for $a, b \in X$;
- anti-symmetric if $a R b R$ implies $a=b$, for $a, b \in X$;
- transitive if $a R b R c$ implies $a R c$, for $a, b, c \in X$.

Example:

The relation \geqslant on \mathbb{R} is:

- reflexive: $a \geqslant a$ for every a;
- not symmetric: $2 \geqslant 1$ but $1 \ngtr 2$;

Properties of relations

R a relation on $X . R$ is:

- reflexive if $a R$ for all $a \in X$;
- symmetric if a $R b$ implies $b R$, for $a, b \in X$;
- anti-symmetric if $a R b R$ implies $a=b$, for $a, b \in X$;
- transitive if $a R b R c$ implies $a R c$, for $a, b, c \in X$.

Example:

The relation \geqslant on \mathbb{R} is:

- reflexive: $a \geqslant a$ for every a;
- not symmetric: $2 \geqslant 1$ but $1 \ngtr 2$;
- anti-symmetric: if $a \geqslant b \geqslant a$, then $a=b$;

Properties of relations

R a relation on $X . R$ is:

- reflexive if $a R$ for all $a \in X$;
- symmetric if a $R b$ implies $b R$, for $a, b \in X$;
- anti-symmetric if $a R b R$ implies $a=b$, for $a, b \in X$;
- transitive if $a R b R c$ implies $a R c$, for $a, b, c \in X$.

Example:

The relation \geqslant on \mathbb{R} is:

- reflexive: $a \geqslant a$ for every a;
- not symmetric: $2 \geqslant 1$ but $1 \ngtr 2$;
- anti-symmetric: if $a \geqslant b \geqslant a$, then $a=b$;
- transitive: if $a \geqslant b \geqslant c$, then $a \geqslant c$.

Properties of relations

R a relation on $X . R$ is:

- reflexive if $a R$ for all $a \in X$;
- symmetric if a $R b$ implies $b R$, for $a, b \in X$;
- anti-symmetric if $a R b R$ implies $a=b$, for $a, b \in X$;
- transitive if $a R b R c$ implies $a R c$, for $a, b, c \in X$.

Example:

The relation R on \mathbb{Z} defined by $a R b$ if $a \geqslant b-1$ is:

Properties of relations

R a relation on $X . R$ is:

- reflexive if $a R$ for all $a \in X$;
- symmetric if a $R b$ implies $b R$, for $a, b \in X$;
- anti-symmetric if $a R b R$ implies $a=b$, for $a, b \in X$;
- transitive if $a R b R c$ implies $a R c$, for $a, b, c \in X$.

Example:

The relation R on \mathbb{Z} defined by $a R b$ if $a \geqslant b-1$ is:

- reflexive: $a \geqslant a-1$ for every $a ;$

Properties of relations

R a relation on $X . R$ is:

- reflexive if $a R$ for all $a \in X$;
- symmetric if a $R b$ implies $b R$, for $a, b \in X$;
- anti-symmetric if $a R b R$ implies $a=b$, for $a, b \in X$;
- transitive if $a R b R c$ implies $a R c$, for $a, b, c \in X$.

Example:

The relation R on \mathbb{Z} defined by $a R b$ if $a \geqslant b-1$ is:

- reflexive: $a \geqslant a-1$ for every $a ;$
- not symmetric: 3 R 1 but 1 R 3;

Properties of relations

R a relation on $X . R$ is:

- reflexive if $a R$ for all $a \in X$;
- symmetric if a $R b$ implies $b R$, for $a, b \in X$;
- anti-symmetric if $a R b R$ implies $a=b$, for $a, b \in X$;
- transitive if $a R b R c$ implies $a R c$, for $a, b, c \in X$.

Example:

The relation R on \mathbb{Z} defined by $a R b$ if $a \geqslant b-1$ is:

- reflexive: $a \geqslant a-1$ for every $a ;$
- not symmetric: 3 R 1 but 1 R 3;
- not anti-symmetric: $1 R 2$ and $2 R 1$;

Properties of relations

R a relation on $X . R$ is:

- reflexive if $a R$ for all $a \in X$;
- symmetric if a $R b$ implies $b R$, for $a, b \in X$;
- anti-symmetric if $a R b R$ implies $a=b$, for $a, b \in X$;
- transitive if $a R b R c$ implies $a R c$, for $a, b, c \in X$.

Example:

The relation R on \mathbb{Z} defined by $a R b$ if $a \geqslant b-1$ is:

- reflexive: $a \geqslant a-1$ for every $a ;$
- not symmetric: 3 R 1 but 1 R 3;
- not anti-symmetric: 1 R 2 and $2 R 1$;
- not transitive: 1 R2R3, but 1 R 3 .

Sequences

Sequences

Sequence: infinite ordered list $a_{1}, a_{2}, a_{3}, \ldots$ of elements of some set.

Sequences

Sequence: infinite ordered list $a_{1}, a_{2}, a_{3}, \ldots$ of elements of some set.

We may write this list as $\left(a_{k}\right)_{k=1}^{\infty}$ or $\left(a_{k}\right)_{k \in \mathbb{N}}$.

Sequences

Sequence: infinite ordered list $a_{1}, a_{2}, a_{3}, \ldots$ of elements of some set.

We may write this list as $\left(a_{k}\right)_{k=1}^{\infty}$ or $\left(a_{k}\right)_{k \in \mathbb{N}}$.

A sequence can be described by giving enough terms to show an obvious pattern, or giving a formula.

Sequences

Sequence: infinite ordered list $a_{1}, a_{2}, a_{3}, \ldots$ of elements of some set.

We may write this list as $\left(a_{k}\right)_{k=1}^{\infty}$ or $\left(a_{k}\right)_{k \in \mathbb{N}}$.

A sequence can be described by giving enough terms to show an obvious pattern, or giving a formula.

The sequence

$$
-2,4,-8,16,-32, \ldots
$$

is the sequence

Sequences

Sequence: infinite ordered list $a_{1}, a_{2}, a_{3}, \ldots$ of elements of some set.

We may write this list as $\left(a_{k}\right)_{k=1}^{\infty}$ or $\left(a_{k}\right)_{k \in \mathbb{N}}$.

A sequence can be described by giving enough terms to show an obvious pattern, or giving a formula.

The sequence

$$
-2,4,-8,16,-32, \ldots
$$

is the sequence $\left((-2)^{k}\right)_{k \in \mathbb{N}}$.

Subsequences

Subsequences

Subsequence: obtained by deleting some of the terms.

Subsequences

Subsequence: obtained by deleting some of the terms.

The sequence $\left(a_{k}\right)_{k=1}^{\infty}$, where $a_{k}=k^{2}$:

$$
1,4,9,16,25,36, \ldots
$$

Subsequences

Subsequence: obtained by deleting some of the terms.

The sequence $\left(a_{k}\right)_{k=1}^{\infty}$, where $a_{k}=k^{2}$:

$$
4, \quad 16, \quad 36, \ldots
$$

Subsequences

Subsequence: obtained by deleting some of the terms.

$$
4, \quad 16, \quad 36, \ldots
$$

The sequence $\left(b_{k}\right)_{k=1}^{\infty}$, where $b_{k}=4 k^{2}$.

