Relations

Relations

X a set. A relation on X is a property which may or may not hold for each ordered pair of elements of X.

Relations

X a set. A relation on X is a property which may or may not hold for each ordered pair of elements of X.

Think of a relation as a symbol which goes between two elements of X to make a statement.

Think of a relation as a symbol which goes between two elements of X to make a statement.

Think of a relation as a symbol which goes between two elements of X to make a statement.

Think of a relation as a symbol which goes between two elements of X to make a statement.

Examples:

► < is a relation on \mathbb{R} : for $a, b \in \mathbb{R}$ we have a statement a < b which is either true or false.

Think of a relation as a symbol which goes between two elements of X to make a statement.

Examples:

► < is a relation on \mathbb{R} : for $a, b \in \mathbb{R}$ we have a statement a < b which is either true or false.

 \blacktriangleright | is a relation on \mathbb{N} .

Think of a relation as a symbol which goes between two elements of X to make a statement.

- ▶ < is a relation on \mathbb{R} : for *a*, *b* ∈ \mathbb{R} we have a statement *a* < *b* which is either true or false.
- \blacktriangleright | is a relation on \mathbb{N} .
- \blacktriangleright \subseteq is a relation on any set of sets.

Think of a relation as a symbol which goes between two elements of X to make a statement.

- ▶ < is a relation on \mathbb{R} : for *a*, *b* ∈ \mathbb{R} we have a statement *a* < *b* which is either true or false.
- \blacktriangleright | is a relation on \mathbb{N} .
- \blacktriangleright \subseteq is a relation on any set of sets.
- "loves" is a relation on the set of all people.

Think of a relation as a symbol which goes between two elements of X to make a statement.

- ▶ < is a relation on \mathbb{R} : for *a*, *b* ∈ \mathbb{R} we have a statement *a* < *b* which is either true or false.
- \blacktriangleright | is a relation on \mathbb{N} .
- \blacktriangleright \subseteq is a relation on any set of sets.
- "loves" is a relation on the set of all people.
- \blacktriangleright = is a relation on any set.

Think of a relation as a symbol which goes between two elements of X to make a statement.

- ▶ < is a relation on \mathbb{R} : for *a*, *b* ∈ \mathbb{R} we have a statement *a* < *b* which is either true or false.
- \blacktriangleright | is a relation on \mathbb{N} .
- \blacktriangleright \subseteq is a relation on any set of sets.
- "loves" is a relation on the set of all people.
- $\blacktriangleright \neq$ is a relation on any set.

R a relation on X. R is:

▶ reflexive if a R a for all $a \in X$;

- ▶ reflexive if a R a for all $a \in X$;
- Symmetric if a R b implies b R a, for $a, b \in X$;

- ▶ reflexive if a R a for all $a \in X$;
- Symmetric if a R b implies b R a, for $a, b \in X$;
- ▶ anti-symmetric if a R b R a implies a = b, for $a, b \in X$;

- ▶ reflexive if a R a for all $a \in X$;
- Symmetric if a R b implies b R a, for $a, b \in X$;
- ▶ anti-symmetric if a R b R a implies a = b, for $a, b \in X$;
- ▶ transitive if a R b R c implies a R c, for $a, b, c \in X$.

R a relation on X. R is:

- ▶ reflexive if a R a for all $a \in X$;
- Symmetric if a R b implies b R a, for $a, b \in X$;
- ▶ anti-symmetric if a R b R a implies a = b, for $a, b \in X$;
- ▶ transitive if a R b R c implies a R c, for $a, b, c \in X$.

Example:

R a relation on X. R is:

- ▶ reflexive if a R a for all $a \in X$;
- Symmetric if a R b implies b R a, for $a, b \in X$;
- ▶ anti-symmetric if a R b R a implies a = b, for $a, b \in X$;
- ▶ transitive if a R b R c implies a R c, for $a, b, c \in X$.

Example:

The relation \ge on \mathbb{R} is:

▶ reflexive: $a \ge a$ for every a;

R a relation on X. R is:

- ▶ reflexive if a R a for all $a \in X$;
- Symmetric if a R b implies b R a, for $a, b \in X$;
- ▶ anti-symmetric if a R b R a implies a = b, for $a, b \in X$;
- ▶ transitive if a R b R c implies a R c, for $a, b, c \in X$.

Example:

- ▶ reflexive: $a \ge a$ for every a;
- ▶ not symmetric: $2 \ge 1$ but $1 \ge 2$;

R a relation on X. R is:

- ▶ reflexive if a R a for all $a \in X$;
- Symmetric if a R b implies b R a, for $a, b \in X$;
- ▶ anti-symmetric if a R b R a implies a = b, for $a, b \in X$;
- ▶ transitive if a R b R c implies a R c, for $a, b, c \in X$.

Example:

- ▶ reflexive: $a \ge a$ for every a;
- ▶ not symmetric: $2 \ge 1$ but $1 \ge 2$;
- ▶ anti-symmetric: if $a \ge b \ge a$, then a = b;

R a relation on X. R is:

- ▶ reflexive if a R a for all $a \in X$;
- Symmetric if a R b implies b R a, for $a, b \in X$;
- ▶ anti-symmetric if a R b R a implies a = b, for $a, b \in X$;
- ▶ transitive if a R b R c implies a R c, for $a, b, c \in X$.

Example:

- ▶ reflexive: $a \ge a$ for every a;
- ▶ not symmetric: $2 \ge 1$ but $1 \ge 2$;
- ▶ anti-symmetric: if $a \ge b \ge a$, then a = b;
- ▶ transitive: if $a \ge b \ge c$, then $a \ge c$.

R a relation on X. R is:

- ▶ reflexive if a R a for all $a \in X$;
- Symmetric if a R b implies b R a, for $a, b \in X$;
- ▶ anti-symmetric if a R b R a implies a = b, for $a, b \in X$;
- ▶ transitive if a R b R c implies a R c, for $a, b, c \in X$.

Example:

R a relation on X. R is:

- ▶ reflexive if a R a for all $a \in X$;
- Symmetric if a R b implies b R a, for $a, b \in X$;
- ▶ anti-symmetric if a R b R a implies a = b, for $a, b \in X$;
- ▶ transitive if a R b R c implies a R c, for $a, b, c \in X$.

Example:

The relation *R* on \mathbb{Z} defined by *a R b* if $a \ge b - 1$ is:

▶ reflexive: $a \ge a - 1$ for every *a*;

R a relation on X. R is:

- ▶ reflexive if a R a for all $a \in X$;
- Symmetric if a R b implies b R a, for $a, b \in X$;
- ▶ anti-symmetric if a R b R a implies a = b, for $a, b \in X$;
- ▶ transitive if a R b R c implies a R c, for $a, b, c \in X$.

Example:

- ▶ reflexive: $a \ge a 1$ for every *a*;
- ▶ not symmetric: 3 R 1 but 1 R 3;

R a relation on X. R is:

- ▶ reflexive if a R a for all $a \in X$;
- Symmetric if a R b implies b R a, for $a, b \in X$;
- ▶ anti-symmetric if a R b R a implies a = b, for $a, b \in X$;
- ▶ transitive if a R b R c implies a R c, for $a, b, c \in X$.

Example:

- ▶ reflexive: $a \ge a 1$ for every *a*;
- ▶ not symmetric: 3 R 1 but 1 R 3;
- ▶ not anti-symmetric: 1 *R* 2 and 2 *R* 1;

R a relation on X. R is:

- ▶ reflexive if a R a for all $a \in X$;
- Symmetric if a R b implies b R a, for $a, b \in X$;
- ▶ anti-symmetric if a R b R a implies a = b, for $a, b \in X$;
- ▶ transitive if a R b R c implies a R c, for $a, b, c \in X$.

Example:

- ▶ reflexive: $a \ge a 1$ for every *a*;
- ▶ not symmetric: 3 R 1 but 1 R 3;
- ▶ not anti-symmetric: 1 *R* 2 and 2 *R* 1;
- ▶ not transitive: 1 R 2 R 3, but 1 R 3.

Sequences

We may write this list as $(a_k)_{k=1}^{\infty}$ or $(a_k)_{k\in\mathbb{N}}$.

We may write this list as $(a_k)_{k=1}^{\infty}$ or $(a_k)_{k\in\mathbb{N}}$.

A sequence can be described by giving enough terms to show an obvious pattern, or giving a formula.

We may write this list as $(a_k)_{k=1}^{\infty}$ or $(a_k)_{k\in\mathbb{N}}$.

A sequence can be described by giving enough terms to show an obvious pattern, or giving a formula.

The sequence

is the sequence

We may write this list as $(a_k)_{k=1}^{\infty}$ or $(a_k)_{k\in\mathbb{N}}$.

A sequence can be described by giving enough terms to show an obvious pattern, or giving a formula.

The sequence

is the sequence $((-2)^k)_{k \in \mathbb{N}}$.

Subsequences

The sequence $(a_k)_{k=1}^{\infty}$, where $a_k = k^2$:

1, 4, 9, 16, 25, 36, . . .

The sequence $(a_k)_{k=1}^{\infty}$, where $a_k = k^2$:

The sequence $(b_k)_{k=1}^{\infty}$, where $b_k = 4k^2$.