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Inverses

Suppose f : A — B. An inverse for fis a function g : B — A such that
g(f(a)) = aforallae A, and
f(g(b)) = bforall b e B.

If f has an inverse, it is unique, so we can talk about the inverse of f.
We write the inverse of f as .
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A function with no inverse

f: N — N defined by f(n) = n+ 1.

Then we could define g : N — N by

(n)— n—1 ifn>1
g\ =1 ifn=1.

Then g(f(n)) = nfor every n € N.
But g is not an inverse for f, because f(g(1)) # 1.

f has no inverse: there is no n € N such that f(n) = 1, so it’s impossible to
satisfy the condition f(g(1)) = 1.
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Theorem: f : A — B has an inverse if and only if it is bijective.

Proof of the ‘if’ part:
Suppose f is injective and surjective. Need to construct an inverse g.

Given b € B, there is a € A such that f(a) = b (because g is surjective).
Choose such an a, and let g(b) = a.

Then need to check that g is an inverse ...
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Suppose f: A — Bis a function, and D C A. The restiriction of fto D is the
function g : D — B defined by g(d) = f(d) forall d € D.

We write f|p for the restriction of f to D.

For example, let f : {1,2,3,4} — {red, green, blue} be defined by
1 +— green, 2 — red, 3 — red, 4 — blue.
If we let D = {1,3}, then f|p : {1,3} — {red, green, blue} is given by
1 +— green, 3 — red.

(n.b. fis surjective but not injective, f|p is injective but not surjective.)
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Suppose f: A— Band g : B— C are functions. The composition of f and g is
the function h: A — C defined by h(a) = g(f(a)) for all a € A.

We write g o f for the composition of f and g.

g o f means “do f then g”.



Define
f:R — [0, 00) by f(x) = x?
g:[0,00) = Rby g(x) = Vx.



Define
f:R — [0, 00) by f(x) = x?
g:[0,00) = Rby g(x) = Vx.

Then



Define
f:R — [0,00) by f(x) = x?
g :[0,00) = Rby g(x) = v/x.

Then

fog:[0,00) — [0,00) is given by x — x.



Define
f:R — [0,00) by f(x) = x?
g :[0,00) = Rby g(x) = v/x.

Then
fog:[0,00) — [0,00) is given by x — x.

gof:R — Risgivenby x — |x|.



