
Inverses

Suppose f : A → B. An inverse for f is a function g : B → A such that

g(f (a)) = a for all a ∈ A, and

f (g(b)) = b for all b ∈ B.
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If f has an inverse, it is unique, so we can talk about the inverse of f .
We write the inverse of f as f−1.
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Inverse: example

f : R → R defined by f (x) = 4 − 3x .

Define g : R → R by g(x) = 4−x
3 . Then

g(f (x)) = g(4 − 3x) = 4−(4−3x)
3 = x

f (g(x)) = f
(

4−x
3

)
= 4 − 34−x

3 = x

so g is an inverse for f .
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f : (0,∞) → (0,∞) defined by f (x) =
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A function with no inverse

f : N → N defined by f (n) = n + 1.

Then we could define g : N → N by

g(n) =

{
n − 1 if n > 1
1 if n = 1.

Then g(f (n)) = n for every n ∈ N.
But g is not an inverse for f , because f (g(1)) ̸= 1.

f has no inverse: there is no n ∈ N such that f (n) = 1, so it’s impossible to
satisfy the condition f (g(1)) = 1.
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Functions with no inverse

f : R → R defined by f (x) = x3 − x .

f has no inverse: if g(f (x)) = x for all x , then

f (0) = f (1)

so
g(f (0)) = g(f (1))

so
0 = 1  
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A theorem

Theorem: f : A → B has an inverse if and only if it is bijective.

Proof of the ‘if’ part:
Suppose f is injective and surjective. Need to construct an inverse g.

Given b ∈ B, there is a ∈ A such that f (a) = b (because g is surjective).
Choose such an a, and let g(b) = a.

Then need to check that g is an inverse . . .
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Restriction

Suppose f : A → B is a function, and D ⊆ A. The restriction of f to D is the
function g : D → B defined by g(d) = f (d) for all d ∈ D.

We write f |D for the restriction of f to D.

For example, let f : {1, 2, 3, 4} → {red, green, blue} be defined by

1 7→ green, 2 7→ red, 3 7→ red, 4 7→ blue.

If we let D = {1, 3}, then f |D : {1, 3} → {red, green, blue} is given by

1 7→ green, 3 7→ red.

(n.b. f is surjective but not injective, f |D is injective but not surjective.)
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Composition

Suppose f : A → B and g : B → C are functions. The composition of f and g is
the function h : A → C defined by h(a) = g(f (a)) for all a ∈ A.

We write g ◦ f for the composition of f and g.

g ◦ f means “do f then g”.
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Composition

Define
f : R → [0,∞) by f (x) = x2

g : [0,∞) → R by g(x) =
√

x .

Then

f ◦ g : [0,∞) → [0,∞) is given by x 7→ x .

g ◦ f : R → R is given by x 7→ |x |.
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