Inverses

Suppose $f: A \rightarrow B$. An inverse for f is a function $g: B \rightarrow A$ such that

Inverses

Suppose $f: A \rightarrow B$. An inverse for f is a function $g: B \rightarrow A$ such that $g(f(a))=a$ for all $a \in A$, and

Inverses

Suppose $f: A \rightarrow B$. An inverse for f is a function $g: B \rightarrow A$ such that $g(f(a))=a$ for all $a \in A$, and $f(g(b))=b$ for all $b \in B$.

Inverses

Suppose $f: A \rightarrow B$. An inverse for f is a function $g: B \rightarrow A$ such that $g(f(a))=a$ for all $a \in A$, and
$f(g(b))=b$ for all $b \in B$.

Inverses

Suppose $f: A \rightarrow B$. An inverse for f is a function $g: B \rightarrow A$ such that $g(f(a))=a$ for all $a \in A$, and $f(g(b))=b$ for all $b \in B$.

Inverses

Suppose $f: A \rightarrow B$. An inverse for f is a function $g: B \rightarrow A$ such that $g(f(a))=a$ for all $a \in A$, and
$f(g(b))=b$ for all $b \in B$.

If f has an inverse, it is unique, so we can talk about the inverse of f.

Inverses

Suppose $f: A \rightarrow B$. An inverse for f is a function $g: B \rightarrow A$ such that $g(f(a))=a$ for all $a \in A$, and
$f(g(b))=b$ for all $b \in B$.

If f has an inverse, it is unique, so we can talk about the inverse of f. We write the inverse of f as f^{-1}.

Inverse: example

Inverse: example

$f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=4-3 x$.

Inverse: example

$f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=4-3 x$.

Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=\frac{4-x}{3}$.

Inverse: example

$f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=4-3 x$.

Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=\frac{4-x}{3}$. Then

Inverse: example

$f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=4-3 x$.

Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=\frac{4-x}{3}$. Then

$$
g(f(x))=g(4-3 x)=\frac{4-(4-3 x)}{3}=x
$$

Inverse: example

$f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=4-3 x$.

Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=\frac{4-x}{3}$. Then

$$
g(f(x))=g(4-3 x)=\frac{4-(4-3 x)}{3}=x
$$

$$
f(g(x))=f\left(\frac{4-x}{3}\right)=4-3 \frac{4-x}{3}=x
$$

Inverse: example

$f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=4-3 x$.

Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=\frac{4-x}{3}$. Then
$g(f(x))=g(4-3 x)=\frac{4-(4-3 x)}{3}=x$
$f(g(x))=f\left(\frac{4-x}{3}\right)=4-3 \frac{4-x}{3}=x$
so g is an inverse for f.

Inverse: example

Inverse: example

$$
f:(0, \infty) \rightarrow(0, \infty) \text { defined by } f(x)=\frac{3}{x}
$$

Inverse: example

$f:(0, \infty) \rightarrow(0, \infty)$ defined by $f(x)=\frac{3}{x}$.

Then f is its own inverse:

Inverse: example

$$
f:(0, \infty) \rightarrow(0, \infty) \text { defined by } f(x)=\frac{3}{x} .
$$

Then f is its own inverse:

$$
f(f(x))=f\left(\frac{3}{x}\right)=\frac{3}{3 / x}=x .
$$

A function with no inverse

$f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(n)=n+1$.

A function with no inverse

$f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(n)=n+1$.
Then we could define $g: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
g(n)= \begin{cases}n-1 & \text { if } n>1 \\ 1 & \text { if } n=1\end{cases}
$$

A function with no inverse

$f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(n)=n+1$.
Then we could define $g: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
g(n)= \begin{cases}n-1 & \text { if } n>1 \\ 1 & \text { if } n=1\end{cases}
$$

Then $g(f(n))=n$ for every $n \in \mathbb{N}$.

A function with no inverse

$f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(n)=n+1$.
Then we could define $g: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
g(n)= \begin{cases}n-1 & \text { if } n>1 \\ 1 & \text { if } n=1\end{cases}
$$

Then $g(f(n))=n$ for every $n \in \mathbb{N}$.
But g is not an inverse for f, because $f(g(1)) \neq 1$.

A function with no inverse

$f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(n)=n+1$.
Then we could define $g: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
g(n)= \begin{cases}n-1 & \text { if } n>1 \\ 1 & \text { if } n=1\end{cases}
$$

Then $g(f(n))=n$ for every $n \in \mathbb{N}$.
But g is not an inverse for f, because $f(g(1)) \neq 1$.
f has no inverse: there is no $n \in \mathbb{N}$ such that $f(n)=1$, so it's impossible to satisfy the condition $f(g(1))=1$.

Functions with no inverse
$f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{3}-x$.

Functions with no inverse

$f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{3}-x$.
f has no inverse: if $g(f(x))=x$ for all x, then

$$
f(0)=f(1)
$$

Functions with no inverse

$f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{3}-x$.
f has no inverse: if $g(f(x))=x$ for all x, then

$$
f(0)=f(1)
$$

SO

$$
g(f(0))=g(f(1))
$$

Functions with no inverse

$f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{3}-x$.
f has no inverse: if $g(f(x))=x$ for all x, then

$$
f(0)=f(1)
$$

SO

$$
g(f(0))=g(f(1))
$$

so

$$
0=1 \quad \text { 名 }
$$

A theorem

A theorem

Theorem: $f: A \rightarrow B$ has an inverse if and only if it is bijective.

A theorem

Theorem: $f: A \rightarrow B$ has an inverse if and only if it is bijective.

Proof of the 'if' part:

A theorem

Theorem: $f: A \rightarrow B$ has an inverse if and only if it is bijective.

Proof of the 'if' part:

Suppose f is injective and surjective.

A theorem

Theorem: $f: A \rightarrow B$ has an inverse if and only if it is bijective.

Proof of the 'if' part:

Suppose f is injective and surjective. Need to construct an inverse g.

A theorem

Theorem: $f: A \rightarrow B$ has an inverse if and only if it is bijective.

Proof of the 'if' part:

Suppose f is injective and surjective. Need to construct an inverse g.

Given $b \in B$, there is $a \in A$ such that $f(a)=b$ (because g is surjective). Choose such an a, and let $g(b)=a$.

A theorem

Theorem: $f: A \rightarrow B$ has an inverse if and only if it is bijective.

Proof of the 'if' part:

Suppose f is injective and surjective. Need to construct an inverse g.

Given $b \in B$, there is $a \in A$ such that $f(a)=b$ (because g is surjective). Choose such an a, and let $g(b)=a$.

Then need to check that g is an inverse ...

Restriction

Restriction

Suppose $f: A \rightarrow B$ is a function, and $D \subseteq A$.

Restriction

Suppose $f: A \rightarrow B$ is a function, and $D \subseteq A$. The restriction of f to D is the function $g: D \rightarrow B$ defined by $g(d)=f(d)$ for all $d \in D$.

Restriction

Suppose $f: A \rightarrow B$ is a function, and $D \subseteq A$. The restriction of f to D is the function $g: D \rightarrow B$ defined by $g(d)=f(d)$ for all $d \in D$.

We write $\left.f\right|_{D}$ for the restriction of f to D.

Restriction

Suppose $f: A \rightarrow B$ is a function, and $D \subseteq A$. The restriction of f to D is the function $g: D \rightarrow B$ defined by $g(d)=f(d)$ for all $d \in D$.

We write $\left.f\right|_{D}$ for the restriction of f to D.
For example, let $f:\{1,2,3,4\} \rightarrow\{$ red, green, blue $\}$ be defined by

$$
1 \mapsto \text { green }, \quad 2 \mapsto \text { red }, \quad 3 \mapsto \text { red }, \quad 4 \mapsto \text { blue } .
$$

Restriction

Suppose $f: A \rightarrow B$ is a function, and $D \subseteq A$. The restriction of f to D is the function $g: D \rightarrow B$ defined by $g(d)=f(d)$ for all $d \in D$.

We write $\left.f\right|_{D}$ for the restriction of f to D.
For example, let $f:\{1,2,3,4\} \rightarrow\{$ red, green, blue $\}$ be defined by

$$
1 \mapsto \text { green }, \quad 2 \mapsto \text { red }, \quad 3 \mapsto \text { red }, \quad 4 \mapsto \text { blue } .
$$

If we let $D=\{1,3\}$, then $\left.f\right|_{D}:\{1,3\} \rightarrow\{$ red, green, blue $\}$ is given by

$$
1 \mapsto \text { green, } \quad 3 \mapsto \text { red. }
$$

Restriction

Suppose $f: A \rightarrow B$ is a function, and $D \subseteq A$. The restriction of f to D is the function $g: D \rightarrow B$ defined by $g(d)=f(d)$ for all $d \in D$.

We write $\left.f\right|_{D}$ for the restriction of f to D.
For example, let $f:\{1,2,3,4\} \rightarrow\{$ red, green, blue $\}$ be defined by

$$
1 \mapsto \text { green }, \quad 2 \mapsto \text { red }, \quad 3 \mapsto \text { red }, \quad 4 \mapsto \text { blue } .
$$

If we let $D=\{1,3\}$, then $\left.f\right|_{D}:\{1,3\} \rightarrow\{$ red, green, blue $\}$ is given by

$$
1 \mapsto \text { green, } \quad 3 \mapsto \text { red. }
$$

(n.b. f is surjective but not injective, $\left.f\right|_{D}$ is injective but not surjective.)

Composition

Composition

Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions.

Composition

Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions. The composition of f and g is the function $h: A \rightarrow C$ defined by $h(a)=g(f(a))$ for all $a \in A$.

Composition

Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions. The composition of f and g is the function $h: A \rightarrow C$ defined by $h(a)=g(f(a))$ for all $a \in A$.

We write $g \circ f$ for the composition of f and g.

Composition

Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions. The composition of f and g is the function $h: A \rightarrow C$ defined by $h(a)=g(f(a))$ for all $a \in A$.

We write $g \circ f$ for the composition of f and g.
$g \circ f$ means "do f then g ".

Composition

Define

$f: \mathbb{R} \rightarrow[0, \infty)$ by $f(x)=x^{2}$
$g:[0, \infty) \rightarrow \mathbb{R}$ by $g(x)=\sqrt{x}$.

Composition

Define

$f: \mathbb{R} \rightarrow[0, \infty)$ by $f(x)=x^{2}$
$g:[0, \infty) \rightarrow \mathbb{R}$ by $g(x)=\sqrt{x}$.

Then

Composition

Define

$f: \mathbb{R} \rightarrow[0, \infty)$ by $f(x)=x^{2}$
$g:[0, \infty) \rightarrow \mathbb{R}$ by $g(x)=\sqrt{x}$.

Then
$f \circ g:[0, \infty) \rightarrow[0, \infty)$ is given by $x \mapsto x$.

Composition

Define

$f: \mathbb{R} \rightarrow[0, \infty)$ by $f(x)=x^{2}$
$g:[0, \infty) \rightarrow \mathbb{R}$ by $g(x)=\sqrt{x}$.

Then
$f \circ g:[0, \infty) \rightarrow[0, \infty)$ is given by $x \mapsto x$.
$g \circ f: \mathbb{R} \rightarrow \mathbb{R}$ is given by $x \mapsto|x|$.

