


```
range(f) = \{f(a) : a \in A\}.
```



```
\operatorname{range}(f) = \{f(a) : a \in A\}.
```



```
range(f) = \{f(a) : a \in A\}.
```

▶
$$g: \{1, 2, 3, 4\} \rightarrow \{\clubsuit, \heartsuit, \diamondsuit, \clubsuit\}$$
 defined by
 $g(1) = \heartsuit, g(2) = \heartsuit, g(3) = \clubsuit, g(4) = \diamondsuit.$


```
range(f) = \{f(a) : a \in A\}.
```

▶
$$g: \{1, 2, 3, 4\} \rightarrow \{\clubsuit, \heartsuit, \diamondsuit, \clubsuit\}$$
 defined by
 $g(1) = \heartsuit, g(2) = \heartsuit, g(3) = \clubsuit, g(4) = \diamondsuit.$
range $(g) = \{\heartsuit, \clubsuit, \diamondsuit\}.$


```
\operatorname{range}(f) = \{f(a) : a \in A\}.
```

►
$$g: \{1, 2, 3, 4\} \rightarrow \{\clubsuit, \heartsuit, \diamondsuit, \clubsuit\}$$
 defined by
 $g(1) = \heartsuit, g(2) = \heartsuit, g(3) = \clubsuit, g(4) = \diamondsuit.$
range $(g) = \{\heartsuit, \clubsuit, \diamondsuit\}.$

•
$$h : \mathbb{R} \to \mathbb{R}$$
 defined by $h(x) = \sin(x)$.


```
\operatorname{range}(f) = \{f(a) : a \in A\}.
```

►
$$g: \{1, 2, 3, 4\} \rightarrow \{\spadesuit, \heartsuit, \diamondsuit, \clubsuit\}$$
 defined by
 $g(1) = \heartsuit, g(2) = \heartsuit, g(3) = \clubsuit, g(4) = \diamondsuit.$
range $(g) = \{\heartsuit, \clubsuit, \diamondsuit\}.$

▶
$$h : \mathbb{R} \to \mathbb{R}$$
 defined by $h(x) = \sin(x)$.
range $(h) = [-1, 1]$.

Suppose $f : A \rightarrow B$. Then f is:

Suppose $f : A \rightarrow B$. Then f is:

 injective if different elements of the domain are mapped to different elements of the codomain

Suppose $f : A \rightarrow B$. Then f is:

 injective if different elements of the domain are mapped to different elements of the codomain

i.e. if a_1 , $a_2 \in A$ and $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$

Suppose $f : A \rightarrow B$. Then f is:

injective if different elements of the domain are mapped to different elements of the codomain
 i.e. if a₁, a₂ ∈ A and a₁ ≠ a₂, then f(a₁) ≠ f(a₂)

surjective if the range equals the codomain

Suppose $f : A \rightarrow B$. Then f is:

injective if different elements of the domain are mapped to different elements of the codomain
 i.e. if a₁, a₂ ∈ A and a₁ ≠ a₂, then f(a₁) ≠ f(a₂)

Surjective if the range equals the codomain i.e. for every *b* ∈ *B*, there is *a* ∈ *A* such that *f*(*a*) = *b*

Suppose $f : A \rightarrow B$. Then f is:

injective if different elements of the domain are mapped to different elements of the codomain
 i.e. if a₁, a₂ ∈ A and a₁ ≠ a₂, then f(a₁) ≠ f(a₂)

Surjective if the range equals the codomain i.e. for every *b* ∈ *B*, there is *a* ∈ *A* such that *f*(*a*) = *b*

bijective if it is both injective and surjective.

Suppose $f : A \rightarrow B$.

► To prove *f* is not surjective, give an explicit *b* such that there is no *a* for which *f*(*a*) = *b*.

- ► To prove *f* is not surjective, give an explicit *b* such that there is no *a* for which *f*(*a*) = *b*.
- ► To prove *f* is not injective, give explicit a_1 , a_2 such that $a_1 \neq a_2$ but $f(a_1) = f(a_2)$.

- ► To prove *f* is not surjective, give an explicit *b* such that there is no *a* for which *f*(*a*) = *b*.
- ► To prove *f* is not injective, give explicit a_1 , a_2 such that $a_1 \neq a_2$ but $f(a_1) = f(a_2)$.
- ► To prove *f* is surjective, show how to find, for general *b*, an element *a* such that f(a) = b.

- ► To prove *f* is not surjective, give an explicit *b* such that there is no *a* for which *f*(*a*) = *b*.
- ► To prove *f* is not injective, give explicit a_1 , a_2 such that $a_1 \neq a_2$ but $f(a_1) = f(a_2)$.
- ► To prove *f* is surjective, show how to find, for general *b*, an element *a* such that f(a) = b.
- ► To prove *f* is injective, prove the contrapositive: show that if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

▶ $f : \mathbb{N} \to \mathbb{N}$ defined by $x \mapsto x^2$.

f : N → N defined by *x* → *x*².
 f is injective but not surjective.

f : N → N defined by *x* → *x*².
 f is injective but not surjective.

▶ $f : \{ \spadesuit, \heartsuit, \diamondsuit, \diamondsuit \} \rightarrow \{ \text{red, blue, green} \}$ defined by

 $\label{eq:product} \blacklozenge \longmapsto \mathsf{blue}, \qquad \heartsuit \longmapsto \mathsf{red}, \qquad \diamondsuit \longmapsto \mathsf{blue}, \qquad \clubsuit \longmapsto \mathsf{green}.$

f : N → N defined by *x* → *x*².
 f is injective but not surjective.

▶ $f : \{ \clubsuit, \heartsuit, \diamondsuit, \diamondsuit \} \rightarrow \{ \text{red, blue, green} \}$ defined by

 $\label{eq:product} \blacklozenge \longmapsto \mathsf{blue}, \qquad \heartsuit \longmapsto \mathsf{red}, \qquad \diamondsuit \longmapsto \mathsf{blue}, \qquad \clubsuit \longmapsto \mathsf{green}.$

f is surjective but not injective.

f : N → N defined by *x* → *x*².
 f is injective but not surjective.

▶ $f : \{ \clubsuit, \heartsuit, \diamondsuit, \diamondsuit \} \rightarrow \{ \text{red, blue, green} \}$ defined by

 $\label{eq:product} \blacklozenge \longmapsto \mathsf{blue}, \qquad \heartsuit \longmapsto \mathsf{red}, \qquad \diamondsuit \longmapsto \mathsf{blue}, \qquad \clubsuit \longmapsto \mathsf{green}.$

f is surjective but not injective.

▶ $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sin(x)$.

f : N → N defined by *x* → *x*².
 f is injective but not surjective.

▶ $f: \{ \clubsuit, \heartsuit, \diamondsuit, \diamondsuit \} \rightarrow \{ \text{red, blue, green} \}$ defined by

 $\label{eq:product} \blacklozenge \longmapsto \mathsf{blue}, \qquad \heartsuit \longmapsto \mathsf{red}, \qquad \diamondsuit \longmapsto \mathsf{blue}, \qquad \clubsuit \longmapsto \mathsf{green}.$

f is surjective but not injective.

f : ℝ → ℝ defined by *f*(*x*) = sin(*x*).
 f is neither injective nor surjective.