Range

Range

Suppose $f: A \rightarrow B$. The range of f is the set of all values that f takes.

Range

Suppose $f: A \rightarrow B$. The range of f is the set of all values that f takes.

$$
\operatorname{range}(f)=\{f(a): a \in A\} .
$$

Range

Suppose $f: A \rightarrow B$. The range of f is the set of all values that f takes.

$$
\operatorname{range}(f)=\{f(a): a \in A\} .
$$

Examples:

Range

Suppose $f: A \rightarrow B$. The range of f is the set of all values that f takes.

$$
\operatorname{range}(f)=\{f(a): a \in A\} .
$$

Examples:

- $g:\{1,2,3,4\} \rightarrow\{\boldsymbol{\omega}, \bigcirc, \diamond, \boldsymbol{\mu}\}$ defined by

$$
g(1)=\bigcirc, \quad g(2)=\bigcirc, \quad g(3)=\boldsymbol{\phi}, \quad g(4)=\diamond .
$$

Range

Suppose $f: A \rightarrow B$. The range of f is the set of all values that f takes.

$$
\operatorname{range}(f)=\{f(a): a \in A\} .
$$

Examples:

- $g:\{1,2,3,4\} \rightarrow\{\boldsymbol{\omega}, \bigcirc, \diamond, \boldsymbol{\mu}\}$ defined by

$$
g(1)=\diamond, \quad g(2)=\diamond, \quad g(3)=\boldsymbol{\phi}, \quad g(4)=\diamond .
$$

$\operatorname{range}(g)=\{\bigcirc, \boldsymbol{\mu}, \diamond\}$.

Range

Suppose $f: A \rightarrow B$. The range of f is the set of all values that f takes.

$$
\operatorname{range}(f)=\{f(a): a \in A\} .
$$

Examples:

- $g:\{1,2,3,4\} \rightarrow\{\boldsymbol{\omega}, \bigcirc, \diamond, \boldsymbol{\omega}\}$ defined by

$$
g(1)=\diamond, \quad g(2)=\diamond, \quad g(3)=\boldsymbol{\phi}, \quad g(4)=\diamond .
$$

$\operatorname{range}(g)=\{\varphi, \boldsymbol{\phi}, \diamond\}$.

- $h: \mathbb{R} \rightarrow \mathbb{R}$ defined by $h(x)=\sin (x)$.

Range

Suppose $f: A \rightarrow B$. The range of f is the set of all values that f takes.

$$
\operatorname{range}(f)=\{f(a): a \in A\} .
$$

Examples:

- $g:\{1,2,3,4\} \rightarrow\{\boldsymbol{\omega}, \bigcirc, \diamond, \boldsymbol{\omega}\}$ defined by

$$
g(1)=\diamond, \quad g(2)=\diamond, \quad g(3)=\boldsymbol{\phi}, \quad g(4)=\diamond .
$$

$\operatorname{range}(g)=\{\rho, \boldsymbol{\phi}, \diamond\}$.

- $h: \mathbb{R} \rightarrow \mathbb{R}$ defined by $h(x)=\sin (x)$. range $(h)=[-1,1]$.

Injective, surjective, bijective

Injective, surjective, bijective

Suppose $f: A \rightarrow B$.

Injective, surjective, bijective

Suppose $f: A \rightarrow B$. Then f is:

Injective, surjective, bijective

Suppose $f: A \rightarrow B$. Then f is:

- injective if different elements of the domain are mapped to different elements of the codomain

Injective, surjective, bijective

Suppose $f: A \rightarrow B$. Then f is:

- injective if different elements of the domain are mapped to different elements of the codomain
i.e. if $a_{1}, a_{2} \in A$ and $a_{1} \neq a_{2}$, then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$

Injective, surjective, bijective

Suppose $f: A \rightarrow B$. Then f is:

- injective if different elements of the domain are mapped to different elements of the codomain
i.e. if $a_{1}, a_{2} \in A$ and $a_{1} \neq a_{2}$, then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$
- surjective if the range equals the codomain

Injective, surjective, bijective

Suppose $f: A \rightarrow B$. Then f is:

- injective if different elements of the domain are mapped to different elements of the codomain
i.e. if $a_{1}, a_{2} \in A$ and $a_{1} \neq a_{2}$, then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$
- surjective if the range equals the codomain
i.e. for every $b \in B$, there is $a \in A$ such that $f(a)=b$

Injective, surjective, bijective

Suppose $f: A \rightarrow B$. Then f is:

- injective if different elements of the domain are mapped to different elements of the codomain
i.e. if $a_{1}, a_{2} \in A$ and $a_{1} \neq a_{2}$, then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$
- surjective if the range equals the codomain
i.e. for every $b \in B$, there is $a \in A$ such that $f(a)=b$
- bijective if it is both injective and surjective.

Proof tips

Suppose $f: A \rightarrow B$.

Proof tips

Suppose $f: A \rightarrow B$.

- To prove f is not surjective, give an explicit b such that there is no a for which $f(a)=b$.

Proof tips

Suppose $f: A \rightarrow B$.

- To prove f is not surjective, give an explicit b such that there is no a for which $f(a)=b$.
- To prove f is not injective, give explicit a_{1}, a_{2} such that $a_{1} \neq a_{2}$ but $f\left(a_{1}\right)=f\left(a_{2}\right)$.

Proof tips

Suppose $f: A \rightarrow B$.

- To prove f is not surjective, give an explicit b such that there is no a for which $f(a)=b$.
- To prove f is not injective, give explicit a_{1}, a_{2} such that $a_{1} \neq a_{2}$ but $f\left(a_{1}\right)=f\left(a_{2}\right)$.
- To prove f is surjective, show how to find, for general b, an element a such that $f(a)=b$.

Proof tips

Suppose $f: A \rightarrow B$.

- To prove f is not surjective, give an explicit b such that there is no a for which $f(a)=b$.
- To prove f is not injective, give explicit a_{1}, a_{2} such that $a_{1} \neq a_{2}$ but $f\left(a_{1}\right)=f\left(a_{2}\right)$.
- To prove f is surjective, show how to find, for general b, an element a such that $f(a)=b$.
- To prove f is injective, prove the contrapositive: show that if $f\left(a_{1}\right)=f\left(a_{2}\right)$, then $a_{1}=a_{2}$.

Examples

Examples

- $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $x \mapsto x^{2}$.

Examples

- $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $x \mapsto x^{2}$. f is injective but not surjective.

Examples

- $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $x \mapsto x^{2}$. f is injective but not surjective.
- $f:\{\boldsymbol{\uparrow}, \bigcirc, \diamond, \boldsymbol{\phi}\} \rightarrow\{$ red, blue, green $\}$ defined by
$\boldsymbol{\phi} \longmapsto$ blue, $\quad \bigcirc \longmapsto$ red, $\quad \diamond \longmapsto$ blue, $\quad \boldsymbol{\&} \longmapsto$ green.

Examples

- $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $x \mapsto x^{2}$. f is injective but not surjective.
- $f:\{\boldsymbol{\wedge}, \diamond, \diamond, \boldsymbol{\phi}\} \rightarrow\{$ red, blue, green $\}$ defined by

↔ \longmapsto blue, $\quad \bigcirc \longmapsto$ red, $\quad \diamond \longmapsto$ blue, \quad \& \longmapsto green.
f is surjective but not injective.

Examples

- $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $x \mapsto x^{2}$. f is injective but not surjective.
- $f:\{\boldsymbol{\uparrow}, \bigcirc, \diamond, \boldsymbol{\phi}\} \rightarrow\{$ red, blue, green $\}$ defined by
$\boldsymbol{\uparrow} \longmapsto$ blue, $\quad \bigcirc \longmapsto$ red, $\quad \diamond \longmapsto$ blue, $\quad \& \longmapsto$ green.
f is surjective but not injective.
- $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\sin (x)$.

Examples

- $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $x \mapsto x^{2}$. f is injective but not surjective.
- $f:\{\boldsymbol{\wedge}, \diamond, \diamond, \boldsymbol{\phi}\} \rightarrow\{$ red, blue, green $\}$ defined by

↔ \longmapsto blue, $\quad \bigcirc \longmapsto$ red, $\quad \diamond \longmapsto$ blue, \quad \& \longmapsto green.
f is surjective but not injective.

- $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\sin (x)$.
f is neither injective nor surjective.

