Cardinality and power set

Cardinality and power set

The cardinality of a finite set is the number of elements it contains.

Cardinality and power set

The cardinality of a finite set is the number of elements it contains. Write $|A|$ for the cardinality of A.

Cardinality and power set

The cardinality of a finite set is the number of elements it contains. Write $|A|$ for the cardinality of A.
The power set of A is the set of all subsets of A :

$$
\mathcal{P}(A)=\{S: S \subseteq A\} .
$$

Cardinality and power set

The cardinality of a finite set is the number of elements it contains. Write $|A|$ for the cardinality of A.
The power set of A is the set of all subsets of A :

$$
\begin{gathered}
\mathcal{P}(A)=\{S: S \subseteq A\} . \\
\mathcal{P}(\{0,1,2\})=\{\emptyset,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\} .
\end{gathered}
$$

Cardinality and power set

The cardinality of a finite set is the number of elements it contains. Write $|A|$ for the cardinality of A.
The power set of A is the set of all subsets of A :

$$
\begin{gathered}
\mathcal{P}(A)=\{S: S \subseteq A\} . \\
\mathcal{P}(\{0,1,2\})=\{\emptyset,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\} . \\
\mathcal{P}(\{1,2\})=\{\emptyset,\{1\},\{2\},\{1,2\}\} .
\end{gathered}
$$

Cardinality and power set

The cardinality of a finite set is the number of elements it contains. Write $|A|$ for the cardinality of A.
The power set of A is the set of all subsets of A :

$$
\begin{gathered}
\mathcal{P}(A)=\{S: S \subseteq A\} . \\
\mathcal{P}(\{0,1,2\})=\{\emptyset,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\} . \\
\mathcal{P}(\{1,2\})=\{\emptyset,\{1\},\{2\},\{1,2\}\} .
\end{gathered}
$$

If $|X|=n$, then what is $|\mathcal{P}(X)|$?

Cardinality and power set

The cardinality of a finite set is the number of elements it contains. Write $|A|$ for the cardinality of A.
The power set of A is the set of all subsets of A :

$$
\begin{gathered}
\mathcal{P}(A)=\{S: S \subseteq A\} . \\
\mathcal{P}(\{0,1,2\})=\{\emptyset,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\} . \\
\mathcal{P}(\{1,2\})=\{\emptyset,\{1\},\{2\},\{1,2\}\} .
\end{gathered}
$$

If $|X|=n$, then what is $|\mathcal{P}(X)|$?

$$
|\mathcal{P}(\{0,1,2\})|=8 .
$$

Cardinality and power set

The cardinality of a finite set is the number of elements it contains. Write $|A|$ for the cardinality of A.
The power set of A is the set of all subsets of A :

$$
\begin{gathered}
\mathcal{P}(A)=\{S: S \subseteq A\} . \\
\mathcal{P}(\{0,1,2\})=\{\emptyset,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\} . \\
\mathcal{P}(\{1,2\})=\{\emptyset,\{1\},\{2\},\{1,2\}\} .
\end{gathered}
$$

If $|X|=n$, then what is $|\mathcal{P}(X)|$?

$$
\begin{gathered}
|\mathcal{P}(\{0,1,2\})|=8 . \\
|\mathcal{P}(\{1,2\})|=4 .
\end{gathered}
$$

The Multiplication Principle

The Multiplication Principle

Suppose we want to count how many ways there are to choose something.

The Multiplication Principle

Suppose we want to count how many ways there are to choose something.
We do this by making a series of choices so that the number of options at each stage doesn't depend on the choices we made at earlier stages.

The Multiplication Principle

Suppose we want to count how many ways there are to choose something.
We do this by making a series of choices so that the number of options at each stage doesn't depend on the choices we made at earlier stages.

Then the total number of options is the product of the number of options at each stage.

The Multiplication Principle

Suppose we want to count how many ways there are to choose something.
We do this by making a series of choices so that the number of options at each stage doesn't depend on the choices we made at earlier stages.

Then the total number of options is the product of the number of options at each stage.
e.g. How many Premiership football games are there each season?

The Multiplication Principle

Suppose we want to count how many ways there are to choose something.
We do this by making a series of choices so that the number of options at each stage doesn't depend on the choices we made at earlier stages.

Then the total number of options is the product of the number of options at each stage.
e.g. How many Premiership football games are there each season? To choose a game:

The Multiplication Principle

Suppose we want to count how many ways there are to choose something.
We do this by making a series of choices so that the number of options at each stage doesn't depend on the choices we made at earlier stages.

Then the total number of options is the product of the number of options at each stage.
e.g. How many Premiership football games are there each season? To choose a game:

- choose the home team (20 choices)

The Multiplication Principle

Suppose we want to count how many ways there are to choose something.
We do this by making a series of choices so that the number of options at each stage doesn't depend on the choices we made at earlier stages.

Then the total number of options is the product of the number of options at each stage.
e.g. How many Premiership football games are there each season? To choose a game:

- choose the home team (20 choices)
- choose the away team (19 choices).

The Multiplication Principle

Suppose we want to count how many ways there are to choose something.
We do this by making a series of choices so that the number of options at each stage doesn't depend on the choices we made at earlier stages.

Then the total number of options is the product of the number of options at each stage.
e.g. How many Premiership football games are there each season? To choose a game:

- choose the home team (20 choices)
- choose the away team (19 choices).

So the total is $20 \times 19=380$.

Cardinality of $\mathcal{P}(X)$

Cardinality of $\mathcal{P}(X)$

Suppose $|X|=n$. Write the elements of X as $x_{1}, x_{2}, \ldots, x_{n}$.

Cardinality of $\mathcal{P}(X)$

Suppose $|X|=n$. Write the elements of X as $x_{1}, x_{2}, \ldots, x_{n}$.

To choose a subset S :

Cardinality of $\mathcal{P}(X)$

Suppose $|X|=n$. Write the elements of X as $x_{1}, x_{2}, \ldots, x_{n}$.

To choose a subset S :

- choose whether $x_{1} \in S$ (2 options);

Cardinality of $\mathcal{P}(X)$

Suppose $|X|=n$. Write the elements of X as $x_{1}, x_{2}, \ldots, x_{n}$.

To choose a subset S :

- choose whether $x_{1} \in S$ (2 options);
- choose whether $x_{2} \in S$ (2 options);

Cardinality of $\mathcal{P}(X)$

Suppose $|X|=n$. Write the elements of X as $x_{1}, x_{2}, \ldots, x_{n}$.

To choose a subset S :

- choose whether $x_{1} \in S$ (2 options);
- choose whether $x_{2} \in S$ (2 options);

Cardinality of $\mathcal{P}(X)$

Suppose $|X|=n$. Write the elements of X as $x_{1}, x_{2}, \ldots, x_{n}$.

To choose a subset S :

- choose whether $x_{1} \in S$ (2 options);
- choose whether $x_{2} \in S$ (2 options);
:
- choose whether $x_{n} \in S$ (2 options).

Cardinality of $\mathcal{P}(X)$

Suppose $|X|=n$. Write the elements of X as $x_{1}, x_{2}, \ldots, x_{n}$.

To choose a subset S :

- choose whether $x_{1} \in S$ (2 options);
- choose whether $x_{2} \in S$ (2 options);
:
- choose whether $x_{n} \in S$ (2 options).

So $|\mathcal{P}(X)|=2 \times 2 \times \cdots \times 2=2^{n}$.

Binomial coefficients

Binomial coefficients

X a set, $k \in \mathbb{Z}$.

Binomial coefficients

X a set, $k \in \mathbb{Z}$. A k-element subset of X : a subset with exactly k elements.

Binomial coefficients

X a set, $k \in \mathbb{Z}$. A k-element subset of X : a subset with exactly k elements. $n, k \in \mathbb{Z}, n \geqslant 0$. The binomial coefficient $\binom{n}{k}$ is the number of k-element subsets of $\{1, \ldots, n\}$.

Binomial coefficients

X a set, $k \in \mathbb{Z}$. A k-element subset of X : a subset with exactly k elements. $n, k \in \mathbb{Z}, n \geqslant 0$. The binomial coefficient $\binom{n}{k}$ is the number of k-element subsets of $\{1, \ldots, n\}$.

- $\binom{n}{1}=$

Binomial coefficients

X a set, $k \in \mathbb{Z}$. A k-element subset of X : a subset with exactly k elements. $n, k \in \mathbb{Z}, n \geqslant 0$. The binomial coefficient $\binom{n}{k}$ is the number of k-element subsets of $\{1, \ldots, n\}$.

- $\binom{n}{1}=n$: subsets are $\{1\},\{2\}, \ldots,\{n\}$.

Binomial coefficients

X a set, $k \in \mathbb{Z}$. A k-element subset of X : a subset with exactly k elements. $n, k \in \mathbb{Z}, n \geqslant 0$. The binomial coefficient $\binom{n}{k}$ is the number of k-element subsets of $\{1, \ldots, n\}$.

- $\binom{n}{1}=n$: subsets are $\{1\},\{2\}, \ldots,\{n\}$.
- $\binom{n}{0}=$

Binomial coefficients

X a set, $k \in \mathbb{Z}$. A k-element subset of X : a subset with exactly k elements. $n, k \in \mathbb{Z}, n \geqslant 0$. The binomial coefficient $\binom{n}{k}$ is the number of k-element subsets of $\{1, \ldots, n\}$.

- $\binom{n}{1}=n$: subsets are $\{1\},\{2\}, \ldots,\{n\}$.
- $\binom{n}{0}=1$: the only 0 -element subset is \emptyset.

Binomial coefficients

X a set, $k \in \mathbb{Z}$. A k-element subset of X : a subset with exactly k elements. $n, k \in \mathbb{Z}, n \geqslant 0$. The binomial coefficient $\binom{n}{k}$ is the number of k-element subsets of $\{1, \ldots, n\}$.

- $\binom{n}{1}=n$: subsets are $\{1\},\{2\}, \ldots,\{n\}$.
- $\binom{n}{0}=1$: the only 0 -element subset is \emptyset.
- $\binom{5}{2}=$

Binomial coefficients

X a set, $k \in \mathbb{Z}$. A k-element subset of X : a subset with exactly k elements. $n, k \in \mathbb{Z}, n \geqslant 0$. The binomial coefficient $\binom{n}{k}$ is the number of k-element subsets of $\{1, \ldots, n\}$.

- $\binom{n}{1}=n$: subsets are $\{1\},\{2\}, \ldots,\{n\}$.
- $\binom{n}{0}=1$: the only 0 -element subset is \emptyset.
- $\binom{5}{2}=10$: the 2 -element subsets of $\{1,2,3,4,5\}$ are

$$
\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{2,3\},\{2,4\},\{2,5\},\{3,4\},\{3,5\},\{4,5\} .
$$

A formula
路 a

A formula

Theorem 5.3: If $0 \leqslant k \leqslant n$, then

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

A formula

Theorem 5.3: If $0 \leqslant k \leqslant n$, then

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Idea of proof: Want to count the ways of choosing a subset $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$.

A formula

Theorem 5.3: If $0 \leqslant k \leqslant n$, then

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Idea of proof: Want to count the ways of choosing a subset $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$. Count the ways of choosing $a_{1}, a_{2}, \ldots, a_{k}$ in order.

A formula

Theorem 5.3: If $0 \leqslant k \leqslant n$, then

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Idea of proof: Want to count the ways of choosing a subset $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$. Count the ways of choosing $a_{1}, a_{2}, \ldots, a_{k}$ in order. By the Multiplication Principle, the number of choices is

$$
n \times(n-1) \times \cdots \times(n-k+1)
$$

A formula

Theorem 5.3: If $0 \leqslant k \leqslant n$, then

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Idea of proof: Want to count the ways of choosing a subset $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$. Count the ways of choosing $a_{1}, a_{2}, \ldots, a_{k}$ in order. By the Multiplication Principle, the number of choices is

$$
n \times(n-1) \times \cdots \times(n-k+1)=\frac{n!}{(n-k)!}
$$

A formula

Theorem 5.3: If $0 \leqslant k \leqslant n$, then

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Idea of proof: Want to count the ways of choosing a subset $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$. Count the ways of choosing $a_{1}, a_{2}, \ldots, a_{k}$ in order. By the Multiplication Principle, the number of choices is

$$
n \times(n-1) \times \cdots \times(n-k+1)=\frac{n!}{(n-k)!} .
$$

But now each k-element subset $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ has been counted k ! times (the number of ways of ordering $a_{1}, a_{2}, \ldots, a_{k}$), so divide by k ! to get the number of k-subsets.

Functions
-

Functions

A, B sets. A function from A to B is a rule which assigns an element of B to each element of A.

Functions

A, B sets. A function from A to B is a rule which assigns an element of B to each element of A.

We write:

Functions

A, B sets. A function from A to B is a rule which assigns an element of B to each element of A.

We write:

- $f: A \rightarrow B$ to mean " f is a function from A to B "

Functions

A, B sets. A function from A to B is a rule which assigns an element of B to each element of A.

We write:

- $f: A \rightarrow B$ to mean " f is a function from A to B "
- $f(a)$ for the element of B assigned to a

Functions

A, B sets. A function from A to B is a rule which assigns an element of B to each element of A.

We write:

- $f: A \rightarrow B$ to mean " f is a function from A to B "
- $f(a)$ for the element of B assigned to a
- $a \mapsto b$ to mean $f(a)=b$ (we say " f maps a to b ")

Functions

A, B sets. A function from A to B is a rule which assigns an element of B to each element of A.

We write:

- $f: A \rightarrow B$ to mean " f is a function from A to B "
- $f(a)$ for the element of B assigned to a
- $a \mapsto b$ to mean $f(a)=b$ (we say " f maps a to b ")
$f(a)$ is called the value of f at a.

Functions

A, B sets. A function from A to B is a rule which assigns an element of B to each element of A.

We write:

- $f: A \rightarrow B$ to mean " f is a function from A to B "
- $f(a)$ for the element of B assigned to a
- $a \mapsto b$ to mean $f(a)=b$ (we say " f maps a to b ")
$f(a)$ is called the value of f at a.
A is the domain of f, and B is the codomain of f.

Examples of functions

Examples of functions

- $f: \mathbb{Q} \rightarrow \mathbb{Q}$ defined by $f(x)=x^{2}$.

Examples of functions

- $f: \mathbb{Q} \rightarrow \mathbb{Q}$ defined by $f(x)=x^{2}$.
$\rightarrow f:\{1,2,3,4\} \rightarrow\{\boldsymbol{\omega}, \diamond, \diamond, \boldsymbol{\varphi}\}$ defined by

$$
f(1)=\varnothing, \quad f(2)=\bigcirc, \quad f(3)=\boldsymbol{\varsigma}, \quad f(4)=\diamond .
$$

Examples of functions

- $f: \mathbb{Q} \rightarrow \mathbb{Q}$ defined by $f(x)=x^{2}$.
$\rightarrow f:\{1,2,3,4\} \rightarrow\{\boldsymbol{\omega}, \diamond, \diamond, \boldsymbol{\varphi}\}$ defined by

$$
f(1)=\bigcirc, \quad f(2)=\bigcirc, \quad f(3)=\boldsymbol{\Omega}, \quad f(4)=\diamond
$$

- $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $x \mapsto \sin (x)$.

Examples of functions

- $f: \mathbb{Q} \rightarrow \mathbb{Q}$ defined by $f(x)=x^{2}$.
$\rightarrow f:\{1,2,3,4\} \rightarrow\{\boldsymbol{\omega}, \diamond, \diamond, \boldsymbol{\varphi}\}$ defined by

$$
f(1)=\varrho, \quad f(2)=\Omega, \quad f(3)=\boldsymbol{\Omega}, \quad f(4)=\diamond .
$$

- $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $x \mapsto \sin (x)$.
- $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
x \mapsto \begin{cases}0 & (x<0) \\ x & (x \geqslant 0)\end{cases}
$$

