Sets

Sets

A set is a collection of objects gathered together.

Sets

A set is a collection of objects gathered together. These objects are called the elements of the set.

Sets

A set is a collection of objects gathered together. These objects are called the elements of the set.
We write $x \in A$ to mean x is an element of A.

Sets

A set is a collection of objects gathered together. These objects are called the elements of the set.
We write $x \in A$ to mean x is an element of A.
Simplest way to write a set: list its elements.

$$
A=\{\boldsymbol{\omega}, \diamond, \diamond, \boldsymbol{\phi}\}
$$

Sets

A set is a collection of objects gathered together. These objects are called the elements of the set.
We write $x \in A$ to mean x is an element of A.
Simplest way to write a set: list its elements.

$$
A=\{\boldsymbol{\omega}, \diamond, \diamond, \boldsymbol{\phi}\}
$$

Order doesn't matter:

Sets

A set is a collection of objects gathered together. These objects are called the elements of the set.
We write $x \in A$ to mean x is an element of A.
Simplest way to write a set: list its elements.

$$
A=\{\boldsymbol{\omega}, \diamond, \diamond, \boldsymbol{\phi}\}
$$

Order doesn't matter:

$$
\{\varnothing, \diamond, \boldsymbol{\phi}, \boldsymbol{\phi}\}=\{\boldsymbol{\omega}, \odot, \diamond, \boldsymbol{\phi}\}
$$

Can write elements more than once:

$$
\{\boldsymbol{\omega}, \odot, \boldsymbol{\omega}, \diamond, \boldsymbol{\phi}\}=\{\boldsymbol{\omega}, \diamond, \diamond, \boldsymbol{\phi}\}
$$

More ways to write a set

More ways to write a set: use ". . ."
$\{1,3,5, \ldots\}$ is the set of all odd natural numbers.
$\{1,3,5, \ldots\}$ is the set of all odd natural numbers.
$\{\ldots,-3,-1,1,3, \ldots\}$ is the set of all odd integers.

More ways to write a set: use ". . ."

$\{1,3,5, \ldots\}$ is the set of all odd natural numbers.
$\{\ldots,-3,-1,1,3, \ldots\}$ is the set of all odd integers.
$\{1,2,3, \ldots, 1000\}$ is the set of all integers from 1 to 1000 .

More ways to write a set: use ". . ."

$\{1,3,5, \ldots\}$ is the set of all odd natural numbers.
$\{\ldots,-3,-1,1,3, \ldots\}$ is the set of all odd integers.
$\{1,2,3, \ldots, 1000\}$ is the set of all integers from 1 to 1000 .
$\{1,2, \ldots, n\}$ is the set of all integers from 1 to n.

More ways to write a set

More ways to write a set: use words

More ways to write a set: use words

"The set of all even integers".

More ways to write a set: use words

"The set of all even integers".
"The set of all people over 80".

More ways to write a set: use words

"The set of all even integers".
"The set of all people over 80 ".
"The set of all rational numbers less than 4".

More ways to write a set

More ways to write a set: sets with special names

\mathbb{N} is the set of all natural numbers.

More ways to write a set: sets with special names

\mathbb{N} is the set of all natural numbers.
\mathbb{Z} is the set of all integers.

More ways to write a set: sets with special names

\mathbb{N} is the set of all natural numbers.
\mathbb{Z} is the set of all integers.
\mathbb{Q} is the set of all rational numbers.

More ways to write a set: sets with special names

\mathbb{N} is the set of all natural numbers.
\mathbb{Z} is the set of all integers.
\mathbb{Q} is the set of all rational numbers.
\mathbb{R} is the set of all real numbers.

More ways to write a set: sets with special names

\mathbb{N} is the set of all natural numbers.
\mathbb{Z} is the set of all integers.
\mathbb{Q} is the set of all rational numbers.
\mathbb{R} is the set of all real numbers.
\emptyset is the empty set: the set with no elements.

More ways to write a set

More ways to write a set: specifying conditions

More ways to write a set: specifying conditions

$\{x: x \in \mathbb{Q}, x>0\}$ is the set of positive rational numbers.

More ways to write a set: specifying conditions

$\{x: x \in \mathbb{Q}, x>0\}$ is the set of positive rational numbers.
$\{x: x \in \mathbb{Z}, 2 \mid x\}$ is the set of even integers.

More ways to write a set: specifying conditions

$\{x: x \in \mathbb{Q}, x>0\}$ is the set of positive rational numbers.
$\{x: x \in \mathbb{Z}, 2 \mid x\}$ is the set of even integers.
$\{x: x \in \mathbb{N}, x \mid 4\}$ is the set $\{1,2,4\}$.

More ways to write a set: specifying conditions

$\{x: x \in \mathbb{Q}, x>0\}$ is the set of positive rational numbers.
$\{x: x \in \mathbb{Z}, 2 \mid x\}$ is the set of even integers.
$\{x: x \in \mathbb{N}, x \mid 4\}$ is the set $\{1,2,4\}$.
Can take just the x in a given set:

More ways to write a set: specifying conditions

$\{x: x \in \mathbb{Q}, x>0\}$ is the set of positive rational numbers.
$\{x: x \in \mathbb{Z}, 2 \mid x\}$ is the set of even integers.
$\{x: x \in \mathbb{N}, x \mid 4\}$ is the set $\{1,2,4\}$.
Can take just the x in a given set:
$\{x \in \mathbb{Z}: x=2 k+1$ for some $k \in \mathbb{Z}\}$ is the set of odd integers.

More ways to write a set: specifying conditions

$\{x: x \in \mathbb{Q}, x>0\}$ is the set of positive rational numbers.
$\{x: x \in \mathbb{Z}, 2 \mid x\}$ is the set of even integers.
$\{x: x \in \mathbb{N}, x \mid 4\}$ is the set $\{1,2,4\}$.
Can take just the x in a given set:
$\{x \in \mathbb{Z}: x=2 k+1$ for some $k \in \mathbb{Z}\}$ is the set of odd integers.
$\left\{x \in \mathbb{Q}: x^{2}<0\right\}$ is the empty set.

More ways to write a set

More ways to write a set: applying operations

More ways to write a set: applying operations

More advanced version: we can apply an operation to the dummy variable.

More ways to write a set: applying operations

More advanced version: we can apply an operation to the dummy variable.
$\left\{x^{2}: x \in \mathbb{Z}\right\}$ is the set of square integers.

More ways to write a set: applying operations

More advanced version: we can apply an operation to the dummy variable.
$\left\{x^{2}: x \in \mathbb{Z}\right\}$ is the set of square integers.
$\{3 x: x \in \mathbb{Z}, x \geqslant 0\}$ is the set of non-negative integers divisible by 3 .

More ways to write a set: applying operations

More advanced version: we can apply an operation to the dummy variable.
$\left\{x^{2}: x \in \mathbb{Z}\right\}$ is the set of square integers.
$\{3 x: x \in \mathbb{Z}, x \geqslant 0\}$ is the set of non-negative integers divisible by 3 .

Can use more than one variable:

More ways to write a set: applying operations

More advanced version: we can apply an operation to the dummy variable.
$\left\{x^{2}: x \in \mathbb{Z}\right\}$ is the set of square integers.
$\{3 x: x \in \mathbb{Z}, x \geqslant 0\}$ is the set of non-negative integers divisible by 3 .

Can use more than one variable:
$\left\{\frac{a}{b}: a, b \in \mathbb{Z}, b \neq 0\right\}$ is the set \mathbb{Q}.

More ways to write a set: applying operations

More advanced version: we can apply an operation to the dummy variable.
$\left\{x^{2}: x \in \mathbb{Z}\right\}$ is the set of square integers.
$\{3 x: x \in \mathbb{Z}, x \geqslant 0\}$ is the set of non-negative integers divisible by 3 .

Can use more than one variable:
$\left\{\frac{a}{b}: a, b \in \mathbb{Z}, b \neq 0\right\}$ is the set \mathbb{Q}.
$\{x+y: x, y \in\{1,2,3,4,5,6\}\}$ is the set

More ways to write a set: applying operations

More advanced version: we can apply an operation to the dummy variable.
$\left\{x^{2}: x \in \mathbb{Z}\right\}$ is the set of square integers.
$\{3 x: x \in \mathbb{Z}, x \geqslant 0\}$ is the set of non-negative integers divisible by 3 .

Can use more than one variable:
$\left\{\frac{a}{b}: a, b \in \mathbb{Z}, b \neq 0\right\}$ is the set \mathbb{Q}.
$\{x+y: x, y \in\{1,2,3,4,5,6\}\}$ is the set $\{2,3,4, \ldots, 12\}$.

Subsets

Subsets

A and B sets.

Subsets

A and B sets. A is a subset of B if every element of A is an element of B.

Subsets

A and B sets. A is a subset of B if every element of A is an element of B. (Write $A \subseteq B$

Subsets

A and B sets. A is a subset of B if every element of A is an element of B. (Write $A \subseteq B$ or $B \supseteq A$.)

Subsets

A and B sets. A is a subset of B if every element of A is an element of B. (Write $A \subseteq B$ or $B \supseteq A$.)
A is a proper subset of B if $A \subseteq B$ and $A \neq B$.

Subsets

A and B sets. A is a subset of B if every element of A is an element of B. (Write $A \subseteq B$ or $B \supseteq A$.)
A is a proper subset of B if $A \subseteq B$ and $A \neq B$. (Write $A \subset B$.)

Set operations

Set operations

A, B sets.

Set operations

A, B sets.

- Union $A \cup B$: the set of things that are elements of A or B or both.

Set operations

A, B sets.

- Union $A \cup B$: the set of things that are elements of A or B or both.

$$
A \cup B=\{x: x \in A \text { or } x \in B\} .
$$

Set operations

A, B sets.

- Union $A \cup B$: the set of things that are elements of A or B or both.

$$
A \cup B=\{x: x \in A \text { or } x \in B\} .
$$

- Intersection $A \cap B$: the set of things that are elements of A and B.

Set operations

A, B sets.

- Union $A \cup B$: the set of things that are elements of A or B or both.

$$
A \cup B=\{x: x \in A \text { or } x \in B\} .
$$

- Intersection $A \cap B$: the set of things that are elements of A and B.

$$
A \cap B=\{x: x \in A \text { and } x \in B\} .
$$

Set operations

A, B sets.

- Union $A \cup B$: the set of things that are elements of A or B or both.

$$
A \cup B=\{x: x \in A \text { or } x \in B\} .
$$

- Intersection $A \cap B$: the set of things that are elements of A and B.

$$
A \cap B=\{x: x \in A \text { and } x \in B\} .
$$

- Difference $A \backslash B$: the set of things that are elements of A but not B.

Set operations

A, B sets.

- Union $A \cup B$: the set of things that are elements of A or B or both.

$$
A \cup B=\{x: x \in A \text { or } x \in B\} .
$$

- Intersection $A \cap B$: the set of things that are elements of A and B.

$$
A \cap B=\{x: x \in A \text { and } x \in B\} .
$$

- Difference $A \backslash B$: the set of things that are elements of A but not B.

$$
A \backslash B=\{x: x \in A \text { and } x \notin B\} .
$$

Set operations

Set operations

- Symmetric difference $A \triangle B$: the set of things that are elements of A or B but not both.

Set operations

- Symmetric difference $A \triangle B$: the set of things that are elements of A or B but not both.

$$
A \triangle B=(A \cup B) \backslash(A \cap B)
$$

Set operations

- Symmetric difference $A \triangle B$: the set of things that are elements of A or B but not both.

$$
A \triangle B=(A \cup B) \backslash(A \cap B)=(A \backslash B) \cup(B \backslash A)
$$

Set operations

- Symmetric difference $A \triangle B$: the set of things that are elements of A or B but not both.

$$
A \triangle B=(A \cup B) \backslash(A \cap B)=(A \backslash B) \cup(B \backslash A) .
$$

Set identities

Abstract

Set identities

Proposition 5.1:
A, B, C sets.

Set identities

Proposition 5.1:

A, B, C sets.
(a) $(A \cap B) \cap C=A \cap(B \cap C)$.

Set identities

Proposition 5.1:

A, B, C sets.
(a) $(A \cap B) \cap C=A \cap(B \cap C)$.
(b) $(A \cup B) \cup C=A \cup(B \cup C)$.

Set identities

Proposition 5.1:

A, B, C sets.
(a) $(A \cap B) \cap C=A \cap(B \cap C)$.
(b) $(A \cup B) \cup C=A \cup(B \cup C)$.
(c) $(A \triangle B) \triangle C=A \triangle(B \triangle C)$.

Set identities

Proposition 5.1:

A, B, C sets.
(a) $(A \cap B) \cap C=A \cap(B \cap C)$.
(b) $(A \cup B) \cup C=A \cup(B \cup C)$.
(c) $(A \triangle B) \triangle C=A \triangle(B \triangle C)$.
(d) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.

Set identities

Proposition 5.1:

A, B, C sets.
(a) $(A \cap B) \cap C=A \cap(B \cap C)$.
(b) $(A \cup B) \cup C=A \cup(B \cup C)$.
(c) $(A \triangle B) \triangle C=A \triangle(B \triangle C)$.
(d) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
(e) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.

Set identities

Proposition 5.1:

A, B, C sets.
(a) $(A \cap B) \cap C=A \cap(B \cap C)$.
(b) $(A \cup B) \cup C=A \cup(B \cup C)$.
(c) $(A \triangle B) \triangle C=A \triangle(B \triangle C)$.
(d) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
(e) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.

Standard way to prove that two sets S, T are equal: prove that $S \subseteq T$ and $T \subseteq S$.

