## Euclid's algorithm

## Euclid's algorithm

Suppose we have $a, b \in \mathbb{N}$, and we want to find $\operatorname{gcd}(a, b)$.

## Euclid's algorithm

Suppose we have $a, b \in \mathbb{N}$, and we want to find $\operatorname{gcd}(a, b)$.
(Can assume $a \geqslant b$.)

## Euclid's algorithm

Suppose we have $a, b \in \mathbb{N}$, and we want to find $\operatorname{gcd}(a, b)$.
(Can assume $a \geqslant b$.)

- If $b \mid a$, then $\operatorname{gcd}(a, b)=b$, and we can stop.


## Euclid's algorithm

Suppose we have $a, b \in \mathbb{N}$, and we want to find $\operatorname{gcd}(a, b)$.
(Can assume $a \geqslant b$.)

- If $b \mid a$, then $\operatorname{gcd}(a, b)=b$, and we can stop.
- Otherwise, find $q, r$ with $0<r<b$ such that $a=q b+r$.


## Euclid's algorithm

Suppose we have $a, b \in \mathbb{N}$, and we want to find $\operatorname{gcd}(a, b)$.
(Can assume $a \geqslant b$.)

- If $b \mid a$, then $\operatorname{gcd}(a, b)=b$, and we can stop.
- Otherwise, find $q, r$ with $0<r<b$ such that $a=q b+r$. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$, so we can replace $a, b$ with the smaller numbers $b, r$, and repeat.


## Example <br> Example

## Example

Want gcd (110, 32).

## Example

Want gcd (110, 32).
$110=3 \times 32+14 \quad \operatorname{sogcd}(110,32)=\operatorname{gcd}(32,14)$.

## Example

Want $\operatorname{gcd}(110,32)$.

$$
110=3 \times 32+14 \quad \operatorname{sog} \operatorname{gcd}(110,32)=\operatorname{gcd}(32,14)
$$

$$
32=2 \times 14+4 \quad \operatorname{sog} \operatorname{gcd}(32,14)=\operatorname{gcd}(14,4)
$$

## Example

Want gcd (110, 32).

$$
110=3 \times 32+14 \quad \operatorname{sog} \operatorname{gcd}(110,32)=\operatorname{gcd}(32,14) .
$$

$$
32=2 \times 14+4 \quad \operatorname{sog} \operatorname{gcd}(32,14)=\operatorname{gcd}(14,4) .
$$

$14=3 \times 4+2 \quad \operatorname{sogcd}(14,4)=\operatorname{gcd}(4,2)$.

## Example

Want $\operatorname{gcd}(110,32)$.

$$
110=3 \times 32+14 \quad \operatorname{sog} \operatorname{gcd}(110,32)=\operatorname{gcd}(32,14)
$$

$$
32=2 \times 14+4 \quad \operatorname{sog} \operatorname{gcd}(32,14)=\operatorname{gcd}(14,4)
$$

$14=3 \times 4+2 \quad \operatorname{sogcd}(14,4)=\operatorname{gcd}(4,2)$.
$2 \mid 4, \operatorname{sogcd}(4,2)=2$.

## Lowest common multiple

## Lowest common multiple

$a, b \in \mathbb{N}$. The lowest common multiple of $a$ and $b$ is the smallest $m \in \mathbb{N}$ such that $a \mid m$ and $b \mid m$.

## Lowest common multiple

$a, b \in \mathbb{N}$. The lowest common multiple of $a$ and $b$ is the smallest $m \in \mathbb{N}$ such that $a \mid m$ and $b \mid m$.

Write Icm ( $a, b$ ).

## Lowest common multiple

$a, b \in \mathbb{N}$. The lowest common multiple of $a$ and $b$ is the smallest $m \in \mathbb{N}$ such that $a \mid m$ and $b \mid m$.

Write Icm ( $a, b$ ).

## Examples

## Lowest common multiple

$a, b \in \mathbb{N}$. The lowest common multiple of $a$ and $b$ is the smallest $m \in \mathbb{N}$ such that $a \mid m$ and $b \mid m$.

Write Icm ( $a, b$ ).

## Examples

- $\operatorname{Icm}(6,10)=$


## Lowest common multiple

$a, b \in \mathbb{N}$. The lowest common multiple of $a$ and $b$ is the smallest $m \in \mathbb{N}$ such that $a \mid m$ and $b \mid m$.

Write Icm ( $a, b$ ).

## Examples

$-\operatorname{Icm}(6,10)=30$.

## Lowest common multiple

$a, b \in \mathbb{N}$. The lowest common multiple of $a$ and $b$ is the smallest $m \in \mathbb{N}$ such that $a \mid m$ and $b \mid m$.

Write Icm ( $a, b$ ).

## Examples

$-\operatorname{lcm}(6,10)=30$.

- $\operatorname{lcm}(9,12)=$


## Lowest common multiple

$a, b \in \mathbb{N}$. The lowest common multiple of $a$ and $b$ is the smallest $m \in \mathbb{N}$ such that $a \mid m$ and $b \mid m$.

Write Icm ( $a, b$ ).

## Examples

$-\operatorname{lcm}(6,10)=30$.

- $\operatorname{Icm}(9,12)=36$.


## Lowest common multiple

$a, b \in \mathbb{N}$. The lowest common multiple of $a$ and $b$ is the smallest $m \in \mathbb{N}$ such that $a \mid m$ and $b \mid m$.

Write Icm ( $a, b$ ).

## Examples

$-\operatorname{lcm}(6,10)=30$.

- $\operatorname{lcm}(9,12)=36$.
- $\operatorname{Icm}(99,100)=$


## Lowest common multiple

$a, b \in \mathbb{N}$. The lowest common multiple of $a$ and $b$ is the smallest $m \in \mathbb{N}$ such that $a \mid m$ and $b \mid m$.

Write Icm ( $a, b$ ).

## Examples

$-\operatorname{lcm}(6,10)=30$.

- $\operatorname{lcm}(9,12)=36$.
$-\operatorname{lcm}(99,100)=9900$.


## Lowest common multiple

$a, b \in \mathbb{N}$. The lowest common multiple of $a$ and $b$ is the smallest $m \in \mathbb{N}$ such that $a \mid m$ and $b \mid m$.

Write Icm ( $a, b$ ).

## Examples

$-\operatorname{lcm}(6,10)=30$.

- $\operatorname{lcm}(9,12)=36$.
- $\operatorname{lcm}(99,100)=9900$.
- $\operatorname{lcm}(1, b)=$


## Lowest common multiple

$a, b \in \mathbb{N}$. The lowest common multiple of $a$ and $b$ is the smallest $m \in \mathbb{N}$ such that $a \mid m$ and $b \mid m$.

Write Icm ( $a, b$ ).

## Examples

$-\operatorname{lcm}(6,10)=30$.

- $\operatorname{lcm}(9,12)=36$.
- $\operatorname{lcm}(99,100)=9900$.
- $\operatorname{lcm}(1, b)=b$.


## Lowest common multiple

$a, b \in \mathbb{N}$. The lowest common multiple of $a$ and $b$ is the smallest $m \in \mathbb{N}$ such that $a \mid m$ and $b \mid m$.

Write $\operatorname{Icm}(a, b)$.

## Examples

- $\operatorname{Icm}(6,10)=30$.
- $\operatorname{lcm}(9,12)=36$.
- $\operatorname{Icm}(99,100)=9900$.
- $\operatorname{lcm}(1, b)=b$.

How do we find $\operatorname{Icm}(a, b)$ quickly?

## Lowest common multiple

## Lowest common multiple

Lemma 4.7: Let $m=\operatorname{Icm}(a, b)$. Then the common multiples of $a$ and $b$ are

$$
m, 2 m, 3 m, \ldots
$$

## Lowest common multiple

Lemma 4.7: Let $m=\operatorname{Icm}(a, b)$. Then the common multiples of $a$ and $b$ are

$$
m, 2 m, 3 m, \ldots
$$

## Example:

## Lowest common multiple

Lemma 4.7: Let $m=\operatorname{Icm}(a, b)$. Then the common multiples of $a$ and $b$ are

$$
m, 2 m, 3 m, \ldots
$$

Example: $\operatorname{lcm}(6,10)=30$.

## Lowest common multiple

Lemma 4.7: Let $m=\operatorname{Icm}(a, b)$. Then the common multiples of $a$ and $b$ are

$$
m, 2 m, 3 m, \ldots .
$$

Example: $\operatorname{lcm}(6,10)=30$.
Multiples of 6 :
$6,12,18,24,30,36,42,48,54,60,66,72,78,84,90, \ldots$

## Lowest common multiple

Lemma 4.7: Let $m=\operatorname{Icm}(a, b)$. Then the common multiples of $a$ and $b$ are

$$
m, 2 m, 3 m, \ldots
$$

Example: $\operatorname{lcm}(6,10)=30$.
Multiples of 6:

$$
6,12,18,24,30,36,42,48,54,60,66,72,78,84,90, \ldots
$$

Multiples of 10:

$$
10,20,30,40,50,60,70,80,90, \ldots
$$

## Lowest common multiple

Lemma 4.7: Let $m=\operatorname{Icm}(a, b)$. Then the common multiples of $a$ and $b$ are

$$
m, 2 m, 3 m, \ldots
$$

Example: $\operatorname{lcm}(6,10)=30$.
Multiples of 6:

$$
6,12,18,24,30,36,42,48,54,60,66,72,78,84,90, \ldots
$$

Multiples of 10:

$$
10,20,30,40,50,60,70,80,90, \ldots
$$

So the common multiples of 6 and 10 are the multiples of 30 .

Finding the Icm

## Finding the lcm

Theorem 4.8: Suppose $a, b \in \mathbb{N}$. Then $\operatorname{Icm}(a, b)=\frac{a b}{\operatorname{gcd}(a, b)}$.

