Queen Mary
University of London

MTH6142: Complex Networks Exam 2022 - Main Examination period Marking scheme

Problem 1

a)

$$
\mathbf{A}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0
\end{array}\right) \quad 3 \mathrm{P}
$$

The adjacency matrix is NOT symmetric. 1P
b) The in-degree sequence is $\{0,1,1,1,3\} \quad 2 \mathrm{P}$

The out-degree sequence is $\{3,1,1,1,0\} \quad 2 \mathrm{P}$
The node with the largest in-degree is node 5 , having $k_{\max }^{i n}=3$.
The node with the largest out-degree is node 1 , having $k_{\text {max }}^{\text {out }}=3.1 \mathrm{P}$
c) $P_{0}^{i n}=1 / 5, P_{1}^{i n}=3 / 5, P_{3}^{i n}=1 / 5$, and $P_{k}^{i n}=0$ otherwise. 2P
$P_{0}^{\text {out }}=1 / 5, P_{1}^{\text {out }}=3 / 5, P_{3}^{\text {out }}=1 / 5, P_{k}^{\text {out }}=0$ otherwise. 2 P
d) The Katz centrality x_{i} of a node i of a network is defined as: 2 P

$$
x_{i}=\alpha \sum_{j}^{N} A_{i j} x_{j}+\beta
$$

where $\alpha \in\left(0,1 / \lambda_{1}\right)$ and $\beta>0$. Or in vectorial notation

$$
\mathbf{x}=\beta(I-\alpha A)^{-1} \mathbf{1}
$$

To find the Katz-centrality for all the nodes of the network G we need therefore to invert matrix $I-\alpha A$. In alternative, we can make use of the expression:

$$
(I-\alpha A)^{-1}=\sum_{l=0}^{\infty} \alpha^{l}(A)^{l} 2 \mathrm{P}
$$

We have:

$$
A=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0
\end{array}\right) \quad A^{2}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0
\end{array}\right) \quad A^{l}=0 \quad l \geq 3
$$

We thus have:

$$
\begin{aligned}
(I & -\alpha A)^{-1}=I+\alpha A+\alpha^{2} A^{2}= \\
& =I+\alpha\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0
\end{array}\right)+\alpha^{2}\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0
\end{array}\right)= \\
& =\left(\begin{array}{cllll}
1 & 0 & 0 & 0 & 0 \\
\alpha & 1 & 0 & 0 & 0 \\
\alpha & 0 & 1 & 0 & 0 \\
\alpha & 0 & 0 & 1 & 0 \\
3 \alpha^{2} & \alpha & \alpha & \alpha & 1
\end{array}\right) \text { 2P }
\end{aligned}
$$

In conclusion we have:

$$
\mathbf{x}=\beta\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
\alpha & 1 & 0 & 0 & 0 \\
\alpha & 0 & 1 & 0 & 0 \\
\alpha & 0 & 0 & 1 & 0 \\
3 \alpha^{2} & \alpha & \alpha & \alpha & 1
\end{array}\right) \mathbf{1}
$$

and the centralities of the five nodes are: 1 P

$$
\begin{aligned}
x_{1} & =\beta \\
x_{2}=x_{3}=x_{4} & =\beta(1+\alpha) \\
x_{5} & =\beta\left(1+3 \alpha+3 \alpha^{2}\right)
\end{aligned}
$$

e) There are no strongly connected components. 1P

There is one weakly connected component 1 P made by nodes $(1,2,3,4,5)$

1P

f)

$$
\mathrm{A}^{u}=\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{array}\right) \quad 3 \mathrm{P}
$$

$L^{u}=6$ links
1 P
g) The matrix of distances in the network is:

$$
\mathbf{d}=\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 2 \\
1 & 0 & 2 & 2 & 1 \\
1 & 2 & 0 & 2 & 1 \\
1 & 2 & 2 & 0 & 1 \\
2 & 1 & 1 & 1 & 0
\end{array}\right) \quad 3 \mathrm{P}
$$

The diameter D of G^{u} is $D=2 \quad 1 \mathrm{P}$
h) The degree distribution $P(k)$ of network G^{u} is: $P(0)=0, P(1)=0, P(2)=3 / 5, P(3)=2 / 5 \quad 2 \mathrm{P}$
i) The betweenness centrality of a node i of an undirected network is:

$$
b_{i}=\sum_{r=1}^{N} \sum_{s=1}^{N} \frac{n_{r s}^{i}}{g_{r s}} 2 \mathrm{P}
$$

where $g_{r s}$ is the number of shortest paths between r and s, while $n_{r s}^{i}$ is the number of shortest paths between r and s passing by i.
The betweenness centrality of node 1 is $b_{1}=9+6 / 2 \quad 2 \mathrm{P}$
The betweenness centrality of node 4 is $b_{4}=9+2 / 3 \quad 2 \mathrm{P}$

Problem 2

a) At time $t \geq 1$ the growth process of the model produces a graph with:

$$
\begin{aligned}
N(t) & =n_{0}+(t-1)=10+t-1=9+t \quad \text { nodes } 2 \mathrm{P} \\
L(t) & =\binom{n_{0}}{2}+m(t-1)=45+3(t-1)=42+3 t \quad \text { links } 2 \mathrm{P}
\end{aligned}
$$

b) The average node degree at time t is then:

$$
\langle k\rangle=\frac{2 L(t)}{N(t)}=\frac{2(42+3 t)}{9+t}=\frac{84+6 t}{9+t} 2 \mathrm{P}
$$

For $N \rightarrow \infty$, this corresponds to a network with an average degree

$$
\langle k\rangle=2 m=62 \mathrm{P}
$$

c) The normalization sum is given by:

$$
\begin{aligned}
& Z=\sum_{j=1}^{N(t-1)} k_{j}+\sum_{j=1}^{N(t-1)} a=2 L(t-1)+a N(t-1)= \\
&=2(42+3(t-1))+a(9+t-1)=(6+a) t+78+8 a
\end{aligned}
$$

hence, for $t \gg 1, Z=\sum_{j} k_{j}-N(t) \simeq(6+a) t \quad 3 \mathrm{P}$
d) In the mean-field approximation, the degree $k_{i}(t)$ of node i at time t satisfies the following differential equation

$$
\frac{d k_{i}}{d t}=\tilde{\Pi}_{i}=3 \frac{k_{i}+a}{\sum_{j}\left(k_{j}+a\right)} 2 \mathrm{P}
$$

with initial condition $k_{i}\left(t_{i}\right)=3$. Using the result found for the normalization sum $Z=(6+a) t$ in point c$)$, for $t \gg 1$ we get:

$$
\frac{d k_{i}}{d t}=3 \frac{k_{i}+a}{(6+a) t}
$$

Integrating the equation, with initial condition $k_{i}\left(t_{i}\right)=3$:

$$
\int_{m}^{k_{i}(t)} \frac{d k_{i}}{k_{i}+a}=\frac{3}{6+a} \int_{t_{i}}^{t} \frac{d t^{\prime}}{t^{\prime}} 2 \mathrm{P}
$$

we find the solution

$$
k_{i}(t)=(3+a)\left(\frac{t}{t_{i}}\right)^{\frac{3}{6+a}}-a 3 \mathrm{P}
$$

e) The probability $P\left(k_{i}(t)>k\right)$ that a random node has degree $k_{i}(t)>k$, in the mean-field approximation can be calculated as follows

$$
P\left(k_{i}(t)>k\right)=P\left[(3+a)\left(\frac{t}{t_{i}}\right)^{\frac{3}{6+a}}-a>k\right]=P\left[t_{i}<t\left(\frac{3+a}{k+a}\right)^{(6+a) / 3}\right] 2 \mathrm{P}
$$

Therefore we have

$$
P\left(k_{i}(t)>k\right)=\left(\frac{3+a}{k+a}\right)^{(6+a) / 3} \quad 1 \mathrm{P}
$$

Therefore, the degree distribution $P(k)$ is given by
$P(k)=\frac{d P\left(k_{i}(t)<k\right)}{d k}=-\frac{d}{d k}\left(\frac{3+a}{k+a}\right)^{(6+a) / 3}=C\left(\frac{1}{k+a}\right)^{(9+a) / 3} 3 \mathrm{P}$
with

$$
C=\frac{6+a}{3}(3+a)^{(6+a) / 3} 1 \mathrm{P}
$$

f) The model produces indeed power-law degree distributions. In fact, for large k, we have

$$
P(k) \propto k^{-\gamma} 2 \mathrm{P}
$$

with an exponent $\gamma=3+a / 3>3$ since $a>0$.

g) The master equation for $N_{k}(t)$ reads

$$
\begin{aligned}
& N_{k}(t+1)=N_{k}(t)+3 \frac{k-1+a}{(6+a) t} N_{k-1}(t)-3 \frac{k+a}{(6+a) t} N_{k}(t) \quad \text { for } \mathrm{k}>33 \mathrm{P} \\
& N_{k}(t+1)=N_{k}(t)-3 \frac{k+a}{(6+a) t} N_{k}(t)+1 \quad \text { for } \mathrm{k}=33 \mathrm{P}
\end{aligned}
$$

