MATHG6142 Complex Networks
May Exam 2020

e Solution Problem 1

(a)

A weighted undirected network is a network in which all the links
are undirected and weighted. This means that each link is associated
to a real or integer number (the weight of the link) indicating the
intensity of the interaction. Moreover each link describes a symmet-
ric interaction therefore if ¢ is linked to j also j is linked to ¢ with
the same weight. A weighted network can be characterized by and
edge list of links (7,7, w;;) where we can link exclusively the links
with ¢ < j or equivalently we list all ordered pairs of nodes (i, j)
connected by a link with weights w;; = wj;. (2.5
marks)[Bookwork]

An example of a weighted network is an airport network where each
node is an airport, each link between two airports indicate a flight
connection and the weight indicate the number of return flights among
the two connected airports flying each week. (2.5
marks)[Bookwork]

A bipartite network Gg = (V,U, E) is a network formed by two non
overlapping sets of nodes U and V and by a set of links F, such that
every link joins a node in V with a node in U. (2.5
marks)[Bookwork]

An example of bipartite network is a collaboration network in which
the two sets of non-overlapping nodes are the set of scientists and the
set of published scientific articles, the links connect each scientist to
the articles that he/she authored. (2.5 marks)[Bookwork]

The degree centrality of a node is given by its degree, i.e. the number
of links incident to it. An example in which the degree centrality can
give a relevant proxy of the importance of a node is the degree of a
node in online social media such as Facebook where the friendship is
reciprocal. On Twitter, where the links are directed a good indica-
tion of the centrality of a node is the in-degree centrality indicating
the number of followers of a Twitter account. (2.5
marks)[Unseen|]

The betweenness centrality ranks nodes according to their between-
ness, and nodes with higher betweenness are the nodes that are tra-
versed by many shortest paths when we consider all shortest paths
between each pair of nodes in the network. Therefore nodes with
high betweenness are important in the prediction of congestions in
a road network, because crossing (nodes) with high betweenness will



be more likely to be congested.
(2.5 marks)[Unseen]

o Solution Problem 2

a) The network is directed because the adjacency matrix is not sym-
metric. (2 marks)[Unseen]
The network is shown in Figure 1. (3 marks)[Unseen]
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Figure 1: The directed network with adjacency matrix A.

b) The in-degree sequence is {2,0, 1,2}. (2.5 marks)[Unseen|
The out-degree sequence is {0, 3,2,0}. (2.5 marks)[Unseen]

¢) The in-degree distribution is given by P"(0) = 1/4, P""(1) = 1/4, P™"(2) =
1/2, P (3) = 0. (2 marks) [Unseen]

The out-degree distribution is given by P°“(0) = 1/2, P°“(1) =
0, Pout(2) = 1/4,P°**(3) =1/4 for k =1,2. (2 marks) [Unseen]

d) The eigenvector centrality x can be found as following.
Given the initial guess x(*) = X1 given by

1
<0 _1

— = =

Let us calculate the result of the iteration

x" = Ax" L. (2)



(1 mark)[Bookwork]

We have
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(1 mark)[Unseen)]
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(1 mark)[Unseen]
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(1 mark)[Unseen)]
Therefore
0
W= (3)
0
for every n > 3. (2 marks)[Unseen]
It follows that
0
0
x=1, (4)
0

(2 marks)[Unseen]

e) The Katz centrality x can be expressed in matrix form as

x=p0 Z a”A"1 (5)
n=0
where 1 is the N-dimensional column vector of elements 1; = 1, forall
i €{1,2,...,N}. For our matrix we have
A =1,
Al =A. (6)



(2 marks)[Unseen]
Moreover we have
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(2 marks)[Unseen]
and
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3 .24 |1 00 00 000O0] [0O0O0OO
AT=ATA = 0 0 0 O 01 0 O o 00 0 O
0 01 0 01 1 0 00 0 O
It follows that
A" =A%3=0 (7)
for every n > 3. (2 marks)[Unseen]
The Katz centrality can then be evaluated as
1 0 0 0 01 1 0 0 0 1 0 1
. 01 0 0 0 0 0 O 21 0 0 0 O 1
x=Fl oo 1o |T™ortoo0 [T o000 1
0 001 01 10 0 010 1
which gives
14 20 + o?
1
x= 1+« (8)
1+ 2a + o?

(2 marks)[Unseen]

e Solution Problem 2

a) The probability that a node i is connected to a node j in the G(V, p)
ensemble is given by p.
The probability that a node ¢ is not connected to a node j in the
G(N, p) random graph ensemble is given by

1—p.

(1 mark)- [Bookwork].
Assuming independence of the two events (presence of the link, and



node connected to it not belonging to the giant component), the
probability that a node ¢ is connected to a node that is not in the
giant component is given by

p(1—=25).

(1 mark)-[Bookwork].
Given the fact that each link of a random graph is drawn indepen-
dently, the probability that a node is not in the giant component
1 — S is given by

1-S= J] l-p+p1—9)]=[1-ps"" (9)
j=1]j#i

(2 marks)-[Bookwork].
By inserting in Eq. (9)
p=c/(N—-1)

where ¢ indicates the average degree, assumed to be independent of
the network size N, we get

S 1-(1-pS)N-1t

c N—-1
= 1-(1-
(1-559)

~ 1—e (10)

where the last expression is valid in the limit N > 1 and where we
have used the limit

lim (1+ %)N _3 (11)

N—o0

(3 marks)-[Bookwork].

The functions y(S) = S and §(S) = 1 — e~ are both monotonically
increasing.
These functions cross at S = 0, therefore S = 0 is always a solution
of the Eq. (9). (2 marks)-[Bookwork]
We observe that §(S) is non-decreasing, has maximum slope at S = 0
and satisfies §(S) < 1. In fact

dl}(s) —cS

W = ce (12)

and




Moreover
g(S)=1—e"% < 1. (14)
(3 marks)-[Bookwork]

Therefore a non-trivial solution S > 0 of the equation S =1 — ¢S
emerges when the functions y(S) and §(5) are tangent to each other
at S =0. (2 marks)-[Bookwork]

This condition implies
29\ - 1

c = 1 (15)

Therefore the critical average degree for having a giant component is
c=1 (3 marks)-[Bookwork]

c) Let us impose that all nodes, except one, belong to the giant compo-
nent, i.e.

S=1- (16)

1
N
(2 marks)-[Bookwork].
In this case the average degree should be ¢ = (k) ~In N for N > 1.
In fact by inserting Eq. (16) into Eq. (9) we have
1

-5 =1- e =1—e UM ~ e (17)

where in the last expression we have put

1-1/N~1,
for N > 1. (4 marks)-[Bookwork]
Therefore we get
1
N =e ¢ (].8)
or equivalently
¢ =1In(N). (19)

(2 marks)-[Bookwork].

e Solution Problem 4
We consider a scale-free network with degree distribution

P(k) = Ck™ (20)

valid for m <k < K and v > 1.



()

In the continuous approximation the normalization condition reads

/mK Ck™7 =1. (21)

(2 marks)-[Bookwork].
By performing the integral we get

C—— (m'™7"—K'77) =1 22
s (m ) )
Therefore we obtain the expression for the normalization constant C'
given by

C=(H-1)[m " —K"]". (23)

(3 marks)-[Bookwork].
The first moment (k) is given by

k) = / S on, (24)

(1 mark)-[Bookwork].
By performing the integral we get

<k>_{2CW(K2_7—m2_7) for v #2

| Cln (%) for y=2 (25)

(1.5 marks)-[Bookwork].
The second moment (k) is given by

(k%) = /K CE3. (26)

(1 mark)-[Bookwork].
By performing the integral we get

B e (K?’_”Y — m3_7) for ~#3
() = { éﬁl (£) for =3 27

(1.5 marks)-[Bookwork].

Power-law networks have power-law exponents v € (2, 3] and they are
characterising by having a finite average degree (k) and a diverging
second moment (k?) of the degree distribution as N — oo and as the
cutoff K — oo. Given this property, scale-free networks are a very
good approximation of the vast variety of real networks characterized
by large fluctuations in the degree of nodes, i.e. networks in which it



is not rare to find nodes with a number of links orders of magnitude
bigger than the average. On the contrary Poisson networks cannot
account for these large fluctuations because they are characterized
by having a standard deviation of the degree distribution o = /(k),
so they cannot allow for large fluctuations in nodes degrees. (5
marks)-[Unseen].

e Solution Problem 5

(a)

Complex networks are neither completely ordered (like lattices) nor
completely disordered (like random graphs). Using your own words:
(a) Discuss the main properties of real-world complex networks such
as social networks or the Internet, SOL: most of real-world complex
networks do not have homogeneous or Poisson degree distributions
(like lattices or random graphs) but instead have a power law degree
distribution (i.e. they are scale-free networks) with hubs. Also, real-
world networks are usually small-world: at the same time they have
high clustering and fulfil the small-world distance property (SWDP).
(5 marks)-[Unseen).

Discuss how these resemble or differ from classic synthetic models
such as lattices or random graphs, and why the differences are so im-
portant in, for instance, epidemic spreading. SOL: lattices tend to
have high clustering but dont display the SWDP, and have a homo-
geneous degree distribution. Random graphs have a Poisson degree
distribution, display the SWDP but have vanishing clustering. So
any of them have power law degree distribution, and thus are unable
to explain the presence of hubs (nodes with very large degree) that
play an important role in epidemic spreading (when a disease reaches
a hub, it spreads massively, and if the network does not have such
super spreaders the spreading is usually slower). (5
marks)-[Unseen)].

Discuss also what other synthetic models beyond lattices or random
graph models have been proposed recently to be able to recover the
properties we observe in real-world networks. SOL: The Barabasi-
Albert model was introduced to recover power law degree distribu-
tions, a property we observe in real-world networks [HERE THE
STUDENT MIGHT EXPLAIN IN GENERAL TERMS THE MECH-
ANISMS OF THE MODEL, BUT WITHOUT GOING INTO MUCH
DETAIL]. The Watts-Strogatz model was introduced to recover high
clustering and SWDP, two properties which show up together in
real-world networks [HERE THE STUDENT MIGHT EXPLAIN IN
GENERAL TERMS THE MECHANISMS OF THE MODEL, BUT
WITHOUT GOING INTO DETAILS] (5 marks)-[Unseen)].



