Complex Networks (MTH6142) Formative Assignment 8

- 1. Growing network model with uniform attachment

At time $t=0$ the network is formed by two nodes joined by a link.

- At every time step a single new node joins the network, so that at time t there will be exactly $N(t)=2+t$ nodes.
Every new node has initially $m=1$ links.
- Each new link attaches to an existing node of the network. The target node i is chosen with probability Π_{i} following a uniform attachment rule $\Pi_{i}=\frac{1}{N(t)}$, where k_{i} is the degree of the node i.
a) What is the time evolution of the degree $k_{i}(t)$ of the generic node i in the mean-field approximation?
b) What is the degree distribution of the network at large times in the mean-field approximation?
c) What is the master equation for the average number of nodes with degree k ?
d) Solve the master equation finding the exact degree distribution of the network.
- 2. The Bianconi-Barabási model with uniform fitness distribution
Each node i of the network has a fitness value η_{i} drawn from a uniform distribution $\rho(\eta)=1$ for $\eta \in[0,1]$.
At time $t=0$ the network is formed by two nodes joined by a link.
- At every time step a single new node j with fitness η_{j} drawn from the $\rho(\eta)$ distribution joins the network, so that at time t there will be exactly $N=2+t$ nodes.Every new node has initially $m=1$ links.
- Each new link attaches to an existing node of the network. The target node i is chosen with probability Π_{i} following the preferential attachment rule biased toward nodes of high degree and high fitness $\Pi_{i}=\frac{\eta_{i} k_{i}}{\sum_{j} \eta_{j} k_{j}}$, where k_{i} is the degree of the node i.
a) Assume that $\sum_{j} \eta_{j} k_{j} \simeq C t$ for $t \gg 1$, with $C>0$ independent on the time t. What is the time evolution of the degree $k_{i}(t)$ of the generic node i in the mean-field approximation?
b) Check self-consistently that the assumption made in point a) is correct and determine the equation that the constant C needs to satisfy.
c) What is the degree distribution of the network at large times in the mean-field approximation?

