

Complex Networks (MTH6142) Formative Assignment 8

• 1. Growing network model with uniform attachment

At time t = 0 the network is formed by two nodes joined by a link.

- At every time step a single new node joins the network, so that at time t there will be exactly N(t) = 2 + t nodes. Every new node has initially m = 1 links.
- Each new link attaches to an existing node of the network. The target node *i* is chosen with probability Π_i following a uniform attachment rule $\Pi_i = \frac{1}{N(t)}$, where k_i is the degree of the node *i*.
- a) What is the time evolution of the degree $k_i(t)$ of the generic node i in the mean-field approximation?
- b) What is the degree distribution of the network at large times in the mean-field approximation?
- c) What is the master equation for the average number of nodes with degree k?
- d) Solve the master equation finding the exact degree distribution of the network.

• 2. The Bianconi-Barabási model with uniform fitness distribution

Each node *i* of the network has a fitness value η_i drawn from a uniform distribution $\rho(\eta) = 1$ for $\eta \in [0, 1]$.

At time t = 0 the network is formed by two nodes joined by a link.

- At every time step a single new node j with fitness η_j drawn from the $\rho(\eta)$ distribution joins the network, so that at time t there will be exactly N = 2 + t nodes. Every new node has initially m = 1 links.
- Each new link attaches to an existing node of the network. The target node *i* is chosen with probability Π_i following the preferential attachment rule biased toward nodes of high degree and high fitness $\Pi_i = \frac{\eta_i k_i}{\sum_j \eta_j k_j}$, where k_i is the degree of the node *i*.
- a) Assume that $\sum_{j} \eta_{j} k_{j} \simeq Ct$ for $t \gg 1$, with C > 0 independent on the time t. What is the time evolution of the degree $k_{i}(t)$ of the generic node i in the mean-field approximation?
- b) Check self-consistently that the assumption made in point a) is correct and determine the equation that the constant C needs to satisfy.
- c) What is the degree distribution of the network at large times in the mean-field approximation?