Complex Networks (MTH6142) Solutions of Formative Assignment 7

- Growing network model

Consider the following model for a growing simple network.
We adopt the following notation: N and L indicate respectively the total number of nodes and links of the network, $A_{i r}$ indicates the generic element of the adjacency matrix \mathbf{A} of the network and k_{i} indicates the degree of node i.
At time $t=0$ the network is formed by a $n_{0}=2$ nodes and a single link (initial number of links $m_{0}=1$) connecting the two nodes.
At every time step $t>0$ the network evolve according to the following rules:

- A single new node joins the network.
- An existing link (i, r) between a node i and a node r (two nodes of the network) is chosen randomly with uniform probability

$$
\pi_{(i, r)}=\frac{A_{i r}}{L}
$$

and the new node is linked to both node i and node r.
a) Show that in this network evolution at each time step the average number of links $\tilde{\Pi}_{i}$ added to node i follows the preferential attachment rule, i.e.

$$
\tilde{\Pi}_{i}=\sum_{r=1}^{N} \pi_{(i, r)}=2 \frac{k_{i}}{\sum_{j=1}^{N} k_{j}}
$$

b) What is the total number of links in the network at time t ? What is the total number of nodes?
c) What is the average degree $\langle k\rangle$ of the network at time t ?
d) Use the result at point a) to derive the time evolution $k_{i}=k_{i}(t)$ of the average degree k_{i} of a node i for $t \gg 1$ in the mean-field, continuous approximation.
e) What is the degree distribution of the network at large times in the mean-field approximation?
f) Let $N_{k}(t)$ be the average number of nodes with degree k at time t. Write the master equation for $N_{k}(t)$.
g) Solve the master equation, finding the exact result for the degree distribution $P(k)$ in the limit $N \rightarrow \infty$.

- Notes on solution
a) The average number of links $\tilde{\Pi}_{i}$ added to node i in timestep t is given by

$$
\begin{equation*}
\tilde{\Pi}_{i}=\sum_{r=1}^{N} \pi_{(i, r)}=\sum_{r=1}^{N} \frac{A_{i r}}{L} \tag{1}
\end{equation*}
$$

Using

$$
\begin{align*}
L & =\frac{1}{2} \sum_{j=1}^{N} k_{j} \\
k_{i} & =\sum_{r=1}^{N} A_{i r} \tag{2}
\end{align*}
$$

we get

$$
\begin{equation*}
\tilde{\Pi}_{i}=\frac{2 k_{i}}{\sum_{j=1}^{N} k_{j}} \tag{3}
\end{equation*}
$$

b) Since initially the number of links is $m_{0}=1$ and at each time we add two links we have $L=1+2 t$. Since initially we have $n_{0}=2$ nodes and at each time we add a node we have $N=2+t$. c)The average degree $\langle k\rangle$ is given by

$$
\begin{equation*}
\langle k\rangle=\frac{2 L}{N}=\frac{2(1+2 t)}{2+t} \tag{4}
\end{equation*}
$$

d)In the mean-field approximation, the degree $k_{i}(t)$ of node i at time t satisfies the following differential equation

$$
\begin{equation*}
\frac{d k_{i}(t)}{d t}=\tilde{\Pi}_{i}=\frac{2 k_{i}}{\sum_{j=1}^{N} k_{j}} \tag{5}
\end{equation*}
$$

In the limit $t \gg 1$, we have $\sum_{j} k_{j}=2 L \simeq 4 t$. Therefore we can write the dynamical mean-field equation for the degree $k_{i}(t)$ of node i, getting

$$
\begin{equation*}
\frac{d k_{i}}{d t}=\frac{2 k_{i}}{4 t}=\frac{k_{i}}{2 t}, \tag{6}
\end{equation*}
$$

with initial condition $k_{i}\left(t_{i}\right)=2$.

This equation has solution

$$
\begin{equation*}
k_{i}(t)=2\left(\frac{t}{t_{i}}\right)^{1 / 2} \tag{7}
\end{equation*}
$$

e) The probability $P\left(k_{i}(t)>k\right)$ that a random node has degree $k_{i}(t)>k$, in the mean-field approximation can be calculated as follows

$$
\begin{equation*}
P\left(k_{i}(t)>k\right)=P\left(2\left(\frac{t}{t_{i}}\right)^{(1 / 2)}>k\right)=P\left(t_{i}<t\left(\frac{2}{k}\right)^{2}\right)=\left(\frac{2}{k}\right)^{2} \tag{8}
\end{equation*}
$$

Therefore, the degree distribution $P(k)$ is given by

$$
\begin{equation*}
P(k)=\frac{d P\left(k_{i}(t)<k\right)}{d k}=-\frac{d}{d k}\left(\frac{2}{k}\right)^{2}=\left(\frac{2}{k}\right)^{3} \tag{9}
\end{equation*}
$$

f) The master equation for $N_{k}(t)$ reads

$$
\begin{equation*}
N_{k}(t+1)=N_{k}(t)+\frac{k-1}{2 t} N_{k-1}(t)\left(1-\delta_{k, 2}\right)-\frac{k}{2 t} N_{k}(t)+\delta_{k, 2} \tag{10}
\end{equation*}
$$

g) Assuming $N_{k}(t) \simeq\left(t+n_{0}\right) P(k)$ for large t

1 we get

$$
\begin{equation*}
P(k)=\frac{k-1}{2} P(k-1)\left(1-\delta_{k, 2}\right)-\frac{k}{2} P(k)+\delta_{k, 2} . \tag{11}
\end{equation*}
$$

giving

$$
\begin{equation*}
P(k)=\frac{k-1}{k+2} P(k-1) \tag{12}
\end{equation*}
$$

for $k>2$ and

$$
\begin{equation*}
P(2)=\frac{1}{2} . \tag{13}
\end{equation*}
$$

Solving these equations we get

$$
\begin{equation*}
P(k)=\frac{12}{k(k+1)(k+2)} \tag{14}
\end{equation*}
$$

