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¢ Growing network model
Consider the following model for a growing simple network.
We adopt the following notation: N and L indicate respectively the total
number of nodes and links of the network, A;, indicates the generic element
of the adjacency matrix A of the network and k; indicates the degree of
node i.
At time t = 0 the network is formed by a ny = 2 nodes and a single link
(initial number of links my = 1) connecting the two nodes.
At every time step t > 0 the network evolve according to the following
rules:

A single new node joins the network.

An existing link (¢,7) between a node 7 and a node r (two nodes of
the network) is chosen randomly with uniform probability
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and the new node is linked to both node ¢ and node r.
Show that in this network evolution at each time step the average

number of links II; added to node i follows the preferential attach-
ment rule, i.e.
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What is the total number of links in the network at time ¢? What is
the total number of nodes?

What is the average degree (k) of the network at time ¢7

Use the result at point a) to derive the time evolution k; = k;(¢) of
the average degree k; of a node i for ¢ > 1 in the mean-field, contin-
uous approximation.

What is the degree distribution of the network at large times in the
mean-field approximation?



f) Let Ni(t) be the average number of nodes with degree k at time .
Write the master equation for Ng(¢).

g) Solve the master equation, finding the exact result for the degree
distribution P(k) in the limit N — oo.

Notes on solution ~
a) The average number of links II; added to node i in timestep ¢ is given
by
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b) Since initially the number of links is mg = 1 and at each time we add
two links we have L = 1 + 2t. Since initially we have ng = 2 nodes and at
each time we add a node we have N = 2 +¢. ¢)The average degree (k) is
given by
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d)In the mean-field approximation, the degree k;(¢) of node i at time ¢
satisfies the following differential equation
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In the limit ¢ > 1, we have )~ k; = 2L ~ 4t. Therefore we can write the
dynamical mean-field equation for the degree k;(t) of node i, getting
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with initial condition k;(¢;) = 2.



This equation has solution

ki(t) = 2 (;)1/2 . (7)
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e) The probability P(k;(t) > k) that a random node has degree k;(t) > k,
in the mean-field approximation can be calculated as follows
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Therefore, the degree distribution P(k) is given by
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f) The master equation for N(t) reads
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g) Assuming N (t) ~ (t + no)P(k) for large ¢
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Solving these equations we get
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