WEEK 6 Tutorial

TAKE-HOME MESSAGE from W5-6: Random graphs

$$A \qquad B \qquad C \qquad (N,Q) \qquad C \qquad (N,P) \qquad C \qquad (N,P) \qquad (N-1) \qquad$$

BINOMIAL

$$G(N_{1}P)$$

$$P_{B}(K) = \begin{pmatrix} N-1 \\ K \end{pmatrix} P^{K} \begin{pmatrix} 1-P \end{pmatrix} \qquad K=0,1,\dots,N-1$$

$$\langle k \rangle = (N-1)p$$

$$\langle k (k-1) \rangle = (N-1)(N-2)p^{2}$$

$$\langle k((k-1)) \rangle = (N-1)(N-2)p^{2}$$

$$\langle k(x-1) \rangle = (N-1)(N-2)p^{2}$$

Msing generating functions

$$D = \frac{N-1}{N}$$

$$P_{p}(k) = \frac{e^{k}}{k!} e^{-e}$$

When N-000

$$\langle k(k-i) \rangle = e^2$$

$$G(x) = e \cdot e$$

TRANSITONS

IN RANDOM GRAPUS

$$b = \frac{N_s}{\sigma} = 0$$

$$\langle k \rangle = P(N-1) - OO$$

 $\langle \kappa \rangle = P(N-1) \frac{N-800}{N-800} \infty$ For 2<1 (becouse < K>>1) YES CIANT COMPONENT because ≥ triongles = 1) We can have 4-diques (because $Z_c = \frac{2}{3}$) but only when $2 \le \frac{2}{3}$ $\langle K \rangle = P(N-1) \xrightarrow{N-D \otimes} \alpha = c$ For 2=1 POISSON WETWORKS with KKD=e=a For C=1 For c>1 1 SUBCRITICAL CRITICAL SUPERCRITICAL NO GIANT YES GIANT This is a Punite # So the demosity of

3

triangles is

mfinitesimal

From FA 4

• 2. A given random network

Consider a random network in the ensemble $\mathbb{G}(N,p)$ with $N=4\times 10^6$ nodes and a linking probability $p=10^{-4}$.

- (a) Calculate the average degree $\langle k \rangle$ of this network.
- Calculate the standard deviation σ_P using the approximated degree distribution given by Eq. (2) POISSON obstantial
- Assume that you observe a node with degree 2×10^3 . How many standard deviations is this observation from the mean? Is this an expected observation or is this an unexpected observation?

$$V = 4.10^6$$
 $P = 10^{-4}$

$$\langle K \rangle = p(N-1) = 40^{-4} (4.10^6 - 1) \approx 400$$

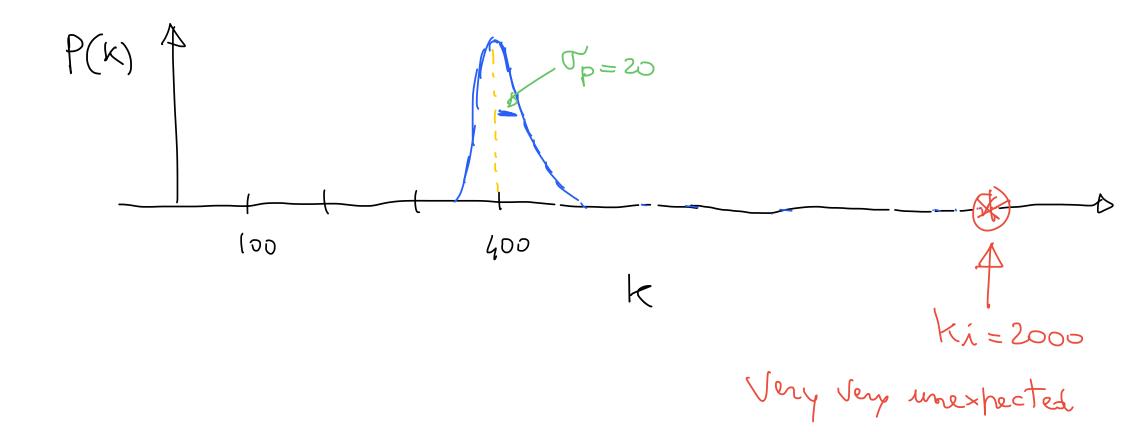
P(k) approximated by a Poisson with
$$e = \langle k \rangle = 400$$

$$P(k) = \frac{c^k}{k!} e^{-c^k} = \frac{400^k}{k!} e^{-400}$$

Variance
$$O_p^2 = O$$
 Standard $O_p = \sqrt{C} = \sqrt{400} = 20$

$$K_{i} = K = 2.10^{3}$$

$$\frac{K - \langle K \rangle}{\sigma_{p}} = \frac{2.10^{3} - 400}{20} = 80$$

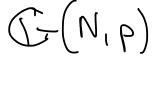


From FA 5

• 1. Random networks in the $\mathbb{G}(N,p)$ ensemble

Assume that $p = a/N^z$, where a > 0 and $z \ge 0$, and a, z independent of N.

- (a) Determine the average degree $\langle k \rangle$ in the limit $N \to \infty$ for the following values of the parameters
 - (i) a = 0.5, z = 1;
 - (ii) a = 2, z = 1;
 - (iii) a > 0, z = 2;
 - (iv) a > 0, z = 0.5.
- In which of the above cases does the random network contain a giant component in the limit $N \to \infty$?.
- Given $p = a/N^z$ with generic values of $a > 0, z \ge 0$ determine the average degree $\langle k \rangle$ in the large network limit $N \to \infty$.
- Determine the conditions on a and z for these random networks to be subcritical, i.e. with a fraction S of nodes in the giant component given by S=0 in the $N\to\infty$ limit.
- Determine the conditions on a and z for these random networks to be supercritical, i.e. with a non vanishing fraction S of nodes in the giant component (S > 0) in the $N \to \infty$ limit.
- Determine the conditions on a and z for which these random networks are critical, in the large network limit, i.e. in the limit $N \to \infty$.



a>0

$$\langle K \rangle = \frac{1}{6} \left(N^{-1} \right) = \frac{N_5}{\sigma} \left(N^{-1} \right)$$

CHANT GMPONENT

iff

lim <k>>1 N-000

$$0 = 0.5$$

 $2 = 1$ $< k > = \frac{0.5}{N^{1}} (N-1)$ $\lim_{N \to \infty} < k > = \lim_{N \to \infty} 0.5 \frac{N-1}{N} = 0.5 < 1$
 $0 = 0.5 < 1$
 $0 = 0.5 < 1$
 $0 = 0.5 < 1$
 $0 = 0.5 < 1$
 $0 = 0.5 < 1$
 $0 = 0.5 < 1$
 $0 = 0.5 < 1$
 $0 = 0.5 < 1$

$$\frac{0=2}{2=1}$$

$$\frac{2}{N^{1}} \left(N-1\right) \xrightarrow{N-\infty} 2 > 1 \qquad YES GIANT$$

$$\frac{1}{N} = \frac{N^2}{N^2} \left(N^{-1} \right) - \frac{N^2}{N^2} = \frac{N^2}{N^2} = \frac{N^2}{N^2} \left(N^{-1} \right) - \frac{N^2}{N^2} = \frac{N^2}{N^2} =$$

$$\langle K \rangle = \frac{N_{5}}{\alpha} \left(N - 1 \right) = \frac{N_{5-1}}{\alpha}$$

$$|N - 8 \otimes N - 2 \otimes N$$

Substitute if

$$\lim_{N\to\infty} \frac{S_{n} \log t}{S_{n}} = \frac{1}{2}$$
 $\lim_{N\to\infty} \frac{S_{n} \log t}{S_{n}} = \frac{1}{2}$
 $\lim_{N\to\infty} \frac{S_{n} \log t}{S_{n}} = \frac{1}{2}$
 $\lim_{N\to\infty} \frac{S_{n} \log t}{S_{n}} = \frac{1}{2}$
 $\lim_{N\to\infty} \frac{S_{n} \log t}{S_{n}} = \frac{1}{2}$

Supercritical of

$$-b \quad \text{if } \ 2 < 1 \quad \text{or} \quad \text{if} \quad \begin{cases} 2 = 1 \\ \alpha > 1 \end{cases}$$

$$-b \qquad \begin{cases} 2 = 1 \\ \alpha = 1 \end{cases}$$

• 2. Random networks in the $\mathbb{G}(N,p)$ ensemble with p=c/(N-1)where c > 0.

- (a) Calculate the average number of triangles $\mathcal{N}_3^{\text{triangles}}$ in the network, by evaluating first the number of ways to select 3 nodes out of Nnodes, and secondly the probability that the selected nodes are all connected to each other.
- (b) Show that in the limit $N \to \infty$ the average number of triangles in the network is

$$\mathcal{N}_3^{\text{triangles}} \simeq \frac{1}{6}c^3.$$
 (12)

This means that the number of triangles is constant, neither growing or vanishing, in the limit of large N.

Helecting 3 modes out of 10

I lun < N triangles $> = lim (N) p^3 = N-800$

 $= \lim_{N \to \infty} \frac{3! (N-3)!}{N!} \frac{(N-1)_3}{c_3} = \lim_{N \to \infty} \frac{3!}{c_3} \frac{(N-1)_3}{N(N-1)(N-5)} = \frac{3!}{c_3} = \frac{3!}{c_3}$

No Lectures in W7

but do NOT forget to work at QUIZ3

and submit it by WEDNESDAY

