## Complex Networks (MTH6142) Solutions of Formative Assignment 2

## - $1^{\star}$ Average degree of a growing network

Assume that you are observing a growing undirected network.
The network evolves in time by the following rules:
At time $t=1$ there is a single isolated node.
At each time $t>1$ a new node is added to the network and is connected to the existing network by a new link.
Consider the network at time $t=T$.
(a) What is the total number of nodes $N$ ?
(b) What is the total number of links $L$ ?
(c) What is the average degree $\langle k\rangle$ ?
(d) What is the average degree in the limit $T \rightarrow \infty$ ?

- Notes on solution
(a) The total number of nodes is $N=T$.

In fact we start from time $t=1$ with a single node and at each time $t>1$ we add a new node.
(b) The total number of links is $L=T-1$.

In fact at time $t=1$ there are no links and at each time $t>1$ we add a new link.
(c) The average degree $\langle k\rangle$ is given by

$$
\begin{equation*}
\langle k\rangle=\frac{2 L}{N}=2 \frac{T-1}{T}=2\left(1-\frac{1}{T}\right) \tag{1}
\end{equation*}
$$

(d) In the limit $T \rightarrow \infty$ we have

$$
\begin{equation*}
\lim _{T \rightarrow \infty}\langle k\rangle=\lim _{T \rightarrow \infty} 2\left(1-\frac{1}{T}\right)=2 \tag{2}
\end{equation*}
$$

## - 2. Matrix Formalism.

Consider a simple network of size $N$. Let $\mathbf{A}$ be the $N \times N$ adjacency matrix and let 1 be the $N$ dimensional column vector whose elements are given by $1_{i}=1 \forall i=1,2, \ldots N$, and $\mathbf{k}$ be the $N$ dimensional column vector whose elements are given by the degrees $k_{i} \forall i=1,2, \ldots, N$, i.e.

$$
\mathbf{1}=\left(\begin{array}{c}
1  \tag{3}\\
1 \\
\vdots \\
1
\end{array}\right), \quad \mathbf{k}=\left(\begin{array}{c}
k_{1} \\
k_{2} \\
\vdots \\
k_{N}
\end{array}\right)
$$

Using the matrix formalism (row by column product) show that
(a) the vector $\mathbf{k}$ whose elements are the degrees $k_{i}$ of the nodes $i=$ $1,2, \ldots, N$ can be written as

$$
\begin{equation*}
\mathbf{k}=\mathbf{A} 1 \tag{4}
\end{equation*}
$$

(b) the number $L$ of links in the network can be written as

$$
\begin{equation*}
L=\frac{1}{2} \mathbf{1}^{T} \mathbf{A} \mathbf{1} \tag{5}
\end{equation*}
$$

(c) the matrix $\mathbf{N}$ whose element $N_{i j}$ is equal to the number of common neighbours of nodes $i$ and $j$ can be written as

$$
\begin{equation*}
\mathbf{N}=\mathbf{A}^{\mathbf{2}} \tag{6}
\end{equation*}
$$

- Notes on solution
(a) The degree of a node in a simple network is given by

$$
\begin{equation*}
k_{i}=\sum_{j=1}^{N} A_{i j}=\sum_{j=1}^{N} A_{i j} 1_{j} . \tag{7}
\end{equation*}
$$

It follow that the vector $\mathbf{k}$ can be expressed as

$$
\begin{equation*}
\mathrm{k}=\mathbf{A} \mathbf{1} \tag{8}
\end{equation*}
$$

(b) The total number of links the network is given by

$$
\begin{equation*}
L=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{i j}=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} 1_{i} A_{i j} 1_{j} . \tag{9}
\end{equation*}
$$

It follows that $L$ can then be written as

$$
\begin{equation*}
L=\frac{1}{2} \mathbf{1}^{T} \mathbf{A} \mathbf{1} \tag{10}
\end{equation*}
$$

(c) A node $r$ is a common neighbour of both node $i$ and node $j$ if and only if $A_{i r} A_{r j}=1$. Therefore the total number of common neighbor of node $i$ and node $j$ is given by $N_{i j}=\sum_{r=1}^{N} A_{i r} A_{r j}$. Therefore we have

$$
\begin{equation*}
\mathbf{N}=\mathbf{A}^{2} \tag{11}
\end{equation*}
$$

- $3^{\star}$. Diameter of simple networks.

One can calculate the diameter of certain types of network exactly. Assume that each of these network has network size $N$.
(a) What is the diameter of a fully connected network?
(b) What is the diameter of a star network?
(c) What is the diameter of a linear chain of $N$ nodes? (see figure 1)
(d) What is the diameter $D$ of a square portion of square lattice, with $l$ nodes along each side (see figure 1 )?
(e) Consider the expression found in question (3d) and find the leading term of $D$ in terms of the total number of nodes $N$ in the network, in the limit $N \gg 1$ proving that for $N \gg 1$

$$
\begin{equation*}
D \simeq 2 \sqrt{N} \tag{12}
\end{equation*}
$$

(f) Which of the above networks have the small-world distance property?

- Notes on the solution
(a) The fully connected network is a network in which every node is liked to every other node. Therefore any two nodes are at distance $d=1$. If follows that the diameter of the network is $D=1$.
(b) A star network is a network in which a central node is linked to $N-1$ leaves nodes of degree 1. Any two leaves of the network are at distance $d=2$ while the central node is at distance $d=1$ from any leaf node. Therefore the diameter of the star network is $D=2$.
(c) In a chain of $N$ nodes the maximum distance is the distance between the two nodes at the edges of the chain. Therefore $D=N-1$.
(d) In a square portion of a square lattice, the most distant pairs of nodes are formed by the nodes at the two opposite corners of the square lattice. These nodes are at distance $d=2(l-1)$, therefore the diameter of the network is

$$
\begin{equation*}
D=2(l-1) \tag{13}
\end{equation*}
$$

(e) Since the number of nodes $N=l^{2}$ we have $D=2(\sqrt{N}-1)$. In the limit $N \gg 1$ we have

$$
\begin{equation*}
D \simeq 2 \sqrt{N} \tag{14}
\end{equation*}
$$

(f) A network displays the small-world distance property if its diameter $D$ satisfies

$$
\begin{equation*}
D=\mathcal{O}(\ln N) \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
D=o(\ln N) \tag{16}
\end{equation*}
$$

or equivalently if

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{D}{\ln N}<\infty \tag{17}
\end{equation*}
$$

(i) The fully connected network has diameter

$$
\begin{equation*}
D=1 \forall N . \tag{18}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{D}{\ln N}=0 \tag{19}
\end{equation*}
$$

and the network has the small world distance property.
(ii) The star network has diameter

$$
\begin{equation*}
D=2 \forall N \tag{20}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{D}{\ln N}=0 \tag{21}
\end{equation*}
$$

and the network has the small world distance property.
(iii) The diameter of a linear chain network is $D=N-1 \gg$ for $N \gg 1$, therefore

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{D}{\ln N}=\infty, \tag{22}
\end{equation*}
$$

i.e. the chain does not have the small world distance property.
(iv) The square portion of the square lattice has a diameter going like

$$
\begin{equation*}
D \simeq 2 \sqrt{N} \tag{23}
\end{equation*}
$$

for $N \gg 1$, therefore

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{D}{\ln N}=\infty, \tag{24}
\end{equation*}
$$

i.e. the network does not have the small world distance property.


Figure 1: A linear chain network and a square portion of a square lattice with $l=6$ nodes along each side.

