Complex Networks (MTH6142) Formative Assignment 2

- 1^{\star} Average degree of a growing network

Assume that you are observing a growing undirected network.
The network evolves in time by the following rules:
At time $t=1$ there is a single isolated node.
At each time $t>1$ a new node is added to the network and is connected to the existing network by a new link.
Consider the network at time $t=T$.
(a) What is the total number of nodes N ?
(b) What is the total number of links L ?
(c) What is the average degree $\langle k\rangle$?
(d) What is the average degree in the limit $T \rightarrow \infty$?

- 2. Matrix Formalism.

Consider a simple network of size N. Let A be the $N \times N$ adjacency matrix and let $\mathbf{1}$ be the N dimensional column vector whose elements are given by $1_{i}=1 \forall i=1,2, \ldots N$, and \mathbf{k} be the N dimensional column vector whose elements are given by the degrees $k_{i} \forall i=1,2, \ldots, N$, i.e.

$$
\mathbf{1}=\left(\begin{array}{c}
1 \tag{1}\\
1 \\
\vdots \\
1
\end{array}\right), \quad \mathbf{k}=\left(\begin{array}{c}
k_{1} \\
k_{2} \\
\vdots \\
k_{N}
\end{array}\right)
$$

Using the matrix formalism (row by column product) show that
(a) the vector \mathbf{k} whose elements are the degrees k_{i} of the nodes $i=$ $1,2, \ldots, N$ can be written as

$$
\begin{equation*}
\mathbf{k}=\mathbf{A} 1 \tag{2}
\end{equation*}
$$

(b) the number L of links in the network can be written as

$$
\begin{equation*}
L=\frac{1}{2} \mathbf{1}^{T} \mathbf{A} \mathbf{1} \tag{3}
\end{equation*}
$$

(c) the matrix \mathbf{N} whose element $N_{i j}$ is equal to the number of common neighbours of nodes i and j can be written as

$$
\begin{equation*}
\mathbf{N}=\mathbf{A}^{\mathbf{2}} \tag{4}
\end{equation*}
$$

1d Chain 2d Lattice

Figure 1: A linear chain network and a square portion of a square lattice with $l=6$ nodes along each side.

- 3^{\star}. Diameter of simple networks.

One can calculate the diameter of certain types of network exactly. Assume that each of these network has network size N.
(a) What is the diameter of a fully connected network?
(b) What is the diameter of a star network?
(c) What is the diameter of a linear chain of N nodes? (see figure 1)
(d) What is the diameter D of a square portion of square lattice, with l nodes along each side (see figure 1)?
(e) Consider the expression found in question (3d) and find the leading term of D in terms of the total number of nodes N in the network, in the limit $N \gg 1$ proving that for $N \gg 1$

$$
\begin{equation*}
D \simeq 2 \sqrt{N} \tag{5}
\end{equation*}
$$

(f) Which of the above networks have the small-world distance property?

