

Complex Networks (MTH6142) Formative Assignment 2

• 1* Average degree of a growing network

Assume that you are observing a growing undirected network.

The network evolves in time by the following rules:

At time t = 1 there is a single isolated node.

At each time t > 1 a new node is added to the network and is connected to the existing network by a new link.

Consider the network at time t = T.

- (a) What is the total number of nodes N?
- (b) What is the total number of links L?
- (c) What is the average degree $\langle k \rangle$?
- (d) What is the average degree in the limit $T \to \infty$?

• 2. Matrix Formalism.

Consider a simple network of size N. Let \mathbf{A} be the $N \times N$ adjacency matrix and let $\mathbf{1}$ be the N dimensional column vector whose elements are given by $1_i = 1 \ \forall i = 1, 2, \dots N$, and \mathbf{k} be the N dimensional column vector whose elements are given by the degrees $k_i \ \forall i = 1, 2, \dots, N$, i.e.

$$\mathbf{1} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}, \qquad \mathbf{k} = \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_N \end{pmatrix} \tag{1}$$

Using the matrix formalism (row by column product) show that

(a) the vector **k** whose elements are the degrees k_i of the nodes i = 1, 2, ..., N can be written as

$$\mathbf{k} = \mathbf{A1}.\tag{2}$$

(b) the number L of links in the network can be written as

$$L = \frac{1}{2} \mathbf{1}^T \mathbf{A} \mathbf{1} \tag{3}$$

(c) the matrix **N** whose element N_{ij} is equal to the number of common neighbours of nodes i and j can be written as

$$\mathbf{N} = \mathbf{A}^2 \tag{4}$$

Figure 1: A linear chain network and a square portion of a square lattice with l=6 nodes along each side.

• 3*. Diameter of simple networks.

One can calculate the diameter of certain types of network exactly. Assume that each of these network has network size N.

- (a) What is the diameter of a fully connected network?
- (b) What is the diameter of a star network?
- (c) What is the diameter of a linear chain of N nodes? (see figure 1)
- (d) What is the diameter D of a square portion of square lattice, with l nodes along each side (see figure 1) ?
- (e) Consider the expression found in question (3d) and find the leading term of D in terms of the total number of nodes N in the network, in the limit $N\gg 1$ proving that for $N\gg 1$

$$D \simeq 2\sqrt{N}.\tag{5}$$

(f) Which of the above networks have the small-world distance property?