
MTH6115 Cryptography
Exam Solutions 2012

1. (a) A substitution cipher uses a permutation on the alphabet, while a transposi-
tion uses a permutation on the plaintext itself (i.e., rearranges the letters in
the plaintext). To confuse digram frequency analysis one uses a transposition
cipher.

(b) One answer is x 7→ x+9. Another answer is x 7→ 3x+7.

(c) The answer is: WMV RHY OKBXW RHYJ GTQW

(d) They are the same. When we compose affine, substitution, and another
affine, the outcome is simply a substitution cipher (for a certain permuta-
tion of the alphabet).

(e) Such a ciphertext can be thought of as having been obtained by first subdi-
viding the plaintext into m substring (where m is the length of the Vigenère
key), then applying an affine substitution to each of these strings, and finally
putting everything back together. So the Kasiski’s method can be applied,
keeping in mind that on each substring we have an affine substitution rather
than a Caesar shift (but, frequency analysis still applies). One should also
keep in mind that the affine ciphers differ by shifts.

2. (a) The answer is ‘good luck with your final exams’. The ciphertext is obtained
from this by applying a Caesar shift of size 6.

(b) Suppose θ is given by x 7→ ax+b and θ′ is given by x 7→ a′x+b′. The letters
c and f correspond to 2 and 5, respectively. So, by assumption, we have:{

2a+b ≡ 2a′+b′ (mod 26)
5a+b ≡ 5a′+b′ (mod 26)

Subtracting, we find 3a≡ 3a′ (mod 26). Since 3 is coprime to 26, we deduce
that a≡ a′ (mod 26). Substituting this back in the first equation, we find that
b≡ b′ (mod 26).

(c) The encryption function for the Vigenère is not a one-way function. In other
words, the decryption function is ‘easy’ to compute.

(d) Alice decrypts the message using her own key, adds a preamble saying some-
thing like ‘This is from Alice,’ then encrypts the whole thing using Bob’s key
and sends it to Bob. Bob first decrypts the message using his secret key (at
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this point he sees the message ‘This is from Alice’), then he encrypts the
message using Alice’s key to get the actual message.

Since getting the actual message requires Bob to encrypt using Alice’s key,
it means at some point the message had been decrypted by Alice. (Here we
use the assumption that e ◦ d is the identity operation.) Since this is a hard
computation (unless one has access to the Alice’s secret key), Bob can be
fairly sure that it was Alice who did the computations.

(e) A function f : A→ B is a ‘one-way function’ if it is ‘easy’ to compute f
but ‘hard’ to compute the inverse of f . We say that f is a ‘trapdoor one-
way function’ if there is an extra piece of information which makes it ‘easy’
to compute the inverse of f . In public-key cryptography, the encryption
function e : P ×K → Z is a trapdoor one-way function. The extra piece of
information which makes the computation of the “inverse” for f ‘easy’ is the
secret key.

3. (a) An n-bit shift register is a device holding n bits of data, which change at each
tick of a clock. If these n bits are x0, . . . ,xn−1 prior to the tick of the clock,
then afterwards we output x0, and the n bits are x1, . . . ,xn, where

xn =
n−1

∑
i=0

aixi (mod 2),

where the ai’s, which are either 0 or 1 are constants associated with the
shift register. The associated Z2 polynomial is xn +∑

n−1
i=0 aixi (strictly xn−

∑
n−1
i=0 aixi).

(b) There are 1
5φ(25−1) = 6 primitive and 1

5(−2+25) = 6 irreducible polyno-
mials. Since every primitive polynomial is irreducible, our counting shows
that the set of primitive polynomials coincides with the set of irreducible
polynomials.

For degree 4 polynomials, we have seen in class that x4 + x3 + x2 + x+ 1 is
irreducible but not primitive.

(c) The output sequence is 000[001001000][...][...], where the part in bracket
repeats. Since the period is 9 < 26−1, the shift register is not primitive.

(d) First we determine the shift register. Let a0, a1 and a2 be the coefficients of
the shift register. We have the following system of equations:

a1 +a2 = 1
a0 +a1 +a2 = 0

a0 +a1 = 0

whose solution is a0 = 1, a1 = 1 and a2 = 0. The output is 011100101.
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4. (a) A q×q Latin square is a q×q array whose entries are taken from an alphabet
of q symbols such that each symbol occurs precisely once in each row, and
once in each column.

(b)
a b c d
b c d a
c d a b
d a b c

(c) a⊕b = c, (a⊕d)⊕ c = d , a	 c = a.

(d) The adjugate is
d c a b
a d b c
b a c d
c b d a

(e) Shannon’s Theorem Suppose that Alice uses a one-time pad. Then, Eve’s
probabilities satisfy

P(p = P0 | z = Z0) = P(p = P0);

in other words, knowledge of the ciphertext gives no information about the
plaintext.

Proof Suppose Alice uses a one-time-pad. Then Eve’s probabilities satisfy
P(p = P0 | z = Z0) = P(p = P0), where Eve reckons the plaintext is P0 with
probability P(p = P0) before intercepting the ciphertext z = Z0, and that the
plaintext is P0 with probability P(p = P0 | z = Z0) after the interception. In
what follows P is the set of all possible plaintexts, K is the set of keys, and
Z is the set of all possible ciphertexts; these all have size qm for a length
m text. We have (using twice the fact that the substitution table is a Latin
square):

P(z = Z0) = ∑P0∈P P(z = Z0|p = P0).P(p = P0) (Thm of Tot Prob)
= ∑P0∈P

1
qm .P(p = p0) (There is only one key K0 with P0⊕K0 = Z0)

= 1
qm ∑P0∈P P(p = p0) =

1
qm ,

and

P(p = P0 | z = Z0) =
P(p=P0&z=Z0)

P(z=Z0)
= (1/qm)P(p=P0)

P(z=Z0)
(since subst table Latin sq)

= (1/qm)P(p=P0)
1/qm = P(p = P0).
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5. (a) Assume that Alice wants to send a secret message to Bob. Alice and Bob
agree on a modulus p, a prime number. They must share the prime p, so
they must assume that Eve know it. Each of them chooses a number coprime
to λ(p) = p−1, and computes its inverse. These numbers are not revealed.
Alice chooses dA and eA, Bob chooses dB and eB. Note that the commutation
condition is satisfied:

TdATdB(x) = xdAdB (mod p) = TdBTdA(x).

Now Alice takes the message x and applies TeA; she sends TeA(x) to Bob. Bob
applies TeB and returns TeBTeA(x) to Alice. Alice applies TdA and returns

TdATeBTeA(x) = TdATeATeB(x) = TeB(x)

to Bob, who then applies TdB and recovers TdBTeB(x) = x, the original mes-
sage.

(b) Suppose instead of the encryption and decryption functions TeA(x) = xeA and
TdA(x) = xdA , Alice used a one-time pad, i.e., DA(x) = x⊕A kA and EA(x) =
x	A kA, where Alice has chosen a Latin square ⊕A and a random key kA.
(Similarly for Bob. We must assume that ⊕A and ⊕B commute, in the sense
that x⊕A y⊕B z = x⊕B z⊕A y. This is the case with binary addition. We
also assume that Eve knows ⊕A and ⊕B.) Then, during the key-exchange
process, Eve would get hold of the following:

DA(x) = x⊕ kA, DBDA(x) = x⊕A kA⊕B kB, DB(x) = x⊕B kB.

From the first two, Eve can recover kB. Then, she can use kB with the thrid
one to recover x.

[Students have seen this in the case where ⊕A and ⊕B are both binary addi-
tion. It is OK if they only explain this case.]

(c) The residue of division of 2829 by 2 ·680 = 1360 is r = 109. Therefore, the
prime factors of 2829 are the roots of the polynomial

x2− (r+1)x+n = x2−110x+2829.

This is an easy equation to solve (even without a calculator). The answer is
2829 = 41 ·69.

(d) We have de− 1 = 132 = 4 · 33. Apply the algorithm with x = 2. We have
gcd(2,299) = 1. Let y = 70 ≡ 233 (mod 299). (Note that 233 (mod 299)
is easy to calculate because 33 = 25 + 1.) Then z = 702 ≡ 116 (mod 229)
has the property that z2 ≡ 1 (mod 299). So 299 divides 1162− 1 = 115 ·
117. From this we find the factors of 299 to be gcd(115,299) = 23 and
gcd(117,299) = 13. So, 299 = 13 ·23.
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6. (a) The discrete logarithm problem is the following

Given x, y, and a prime p such that y≡ xe (mod p), find e.

It is not known to be NP-complete. El-Gamal crypto-system is based on this
problem.

(b) Since 43 is prime, the order k of 2 modulo 43 should divide 43− 1 = 42 =

2 · 3 · 7. It is easy to see that k can not be any of 2, 3, 6, and 7. In fact
27 ≡−1 (mod 43). So the order of 2 is k = 14.

(c) This is an element g ∈ Zp whose order is precisely p−1.

(d) First we show that if g is a primitive root modulo p then gk is a primitive
root if and only if gcd(k, p− 1) = 1. First suppose that gcd(k, p− 1) = 1.
We want to show that h := gk is a primitive root. There exists l such that
lk ≡ 1 (mod p−1). So, by Fermat, hl = gkl ∼= g (mod p). Since g is a
power of h, and every x ∈ Zp is a power of g, every such x is a power of
h as well. To prove the converse, suppose that h = gk is a primitive root.
Let d = gcd(k, p− 1). Then, h

p−1
d = gk p−1

d ≡ 1 (mod p−1). Since h is a
primitive root, this implies that p−1

d ≥ p−1. Therefore, d = 1.

(e) First we need to find one primitive root. The first guess is g = 2. The order
k of 2 divides 10. It is easy to see that k is not any of 1, 2, or 5, so k = 10.
This shows that k = 10, that is, 2 is a primitive root. Now, by the previous
part, the primitive roots modulo 11 are

{21,23,27,29}= {2,8,7,6}.
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