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In this paper, we use the following notation.

• Cn denotes the cyclic group of order n.

• Un is the set of integers between 0 and n which are prime to n, with the group operation
being multiplication modulo n.

• D2n is the group with 2n elements

1, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s.

The group operation is determined by the relations rn = s2 = 1 and sr = rn−1s.

• Q8 is the group {1,−1, i,−i, j,− j, k,−k}, in which

i2 = j2 = k2 = −1, i j = k, jk = i, ki = j, ji = −k, kj = −i, ik = − j.

In any question, you may freely use the Coset Lemma: if f , g are elements of a group G and
H 6 G, then H f = Hg if and only if f g−1

∈ H.

Question 1.
(a) Give the definition of a group. [3]

Suppose G is a group and f , g ∈ G.

(b) Give the definition of the powers gn for n ∈ Z. [3]

(c) Define what it means to say that f and g are conjugate in G. Give the definition of the
conjugacy class containing g. [4]

(d) Is it true that if f is conjugate to g, then f 3 is conjugate to g3? Justify your answer. [5]

(e) Is it true that if f 3 is conjugate to g3, then f is conjugate to g? Justify your answer. [5]

(f) Find the conjugacy class containing s inD12. Show your working. [5]

Question 2. Write an essay on group actions. [You should include precise definitions and
statements of results, illustrated by examples and applications, and give some proofs.] [25]
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Question 3. Suppose G is a group, H is a subgroup of G and g ∈ G.

(a) Give the definition of the right coset Hg. [2]

(b) Give the definition of the index of H in G. [2]

(c) Suppose X is a right coset of H in G, and a, b, c ∈ X. Prove that ab−1c ∈ X. [4]

(d) Give the definition of a normal subgroup of G. [2]

(e) Give an example of a group G and a subgroup H which is not normal. [You do not need to
prove anything.] [2]

(f) Suppose N is a normal subgroup of G. Give the definition of the quotient group G/N.
[You do not have to prove that G/N is a group, but you should prove that the group operation is
well-defined.] [6]

(g) Find a subgroup N ofU40 such that |N| = 4. Write down all the cosets of N inU40, and
find the Cayley table ofU40/N. [You do not need to prove anything.] [7]

Question 4. Suppose G and H are groups and g ∈ G.

(a) Give the definitions of the following terms:

• the order of g;

• a homomorphism from G to H;

• an isomorphism from G to H;

• an automorphism of G;

• an inner automorphism of G;

• the automorphism group of G. [8]

(b) Give an example of an automorphism of C8 which is not the identity map. [2]

(c) Suppose φ : G→ H is an isomorphism, and g ∈ G. Prove that ord
(
φ(g)
)

= ord
(
g
)
. [You

may assume that φ(1) = 1 and that φ−1 is a homomorphism.] [4]

(d) Write down a theorem describing the inner automorphism group of G in terms of the
centre of G. [You do not need to prove anything.] [3]

Suppose ψ is an automorphism of Q8 satisfying ψ(− j) = i and ψ(k) = j.

(e) Write down ψ(g) for every g ∈ Q8, and hence find the order of ψ. [5]

(f) Is ψ an inner automorphism of Q8? Justify your answer. [3]
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Question 5.

(a) Give the definition of a simple group. [You do not need to define what a group or a normal
subgroup is.] [2]

(b) Suppose G is an abelian group of order 49. Prove that G is not simple. [You may use basic
results about the orders of elements of G.] [6]

(c) Now suppose G is a finite group and p is a prime. Give the definition of a Sylow
p-subgroup of G. [2]

(d) Find a Sylow 2-subgroup, a Sylow 3-subgroup and a Sylow 5-subgroup ofD12. [You do
not need to prove anything.] [5]

(e) Give precise statements of all the Sylow Theorems. [6]

(f) Using the Sylow theorems, prove that there is no simple group of order 40. [4]

Question 6.
(a) Give the definition of the symmetric group Sn and of the alternating groupAn. [5]

(b) Suppose g ∈ Sn. Explain how to write g in disjoint cycle notation. [3]

(c) Explain how to use the disjoint cycle notation for g to find whether g ∈ An. [You do not
need to prove anything.] [2]

(d) Prove that any element ofAn can be written as a product of 3-cycles. [5]

(e) Now let G be any group, and suppose H 6 G and N P G. Define the set NH, and prove
that it is a subgroup of G. [5]

(f) Now suppose G = S4 and N = {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}. Write down a
subgroup H 6 S4 different from N such that |H| = 4, and find all the elements of NH.
[You do not need to prove anything.] [5]

End of Paper.
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