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In this paper, we use the following notation.

• Cn denotes the cyclic group of order n.

• Un is the set of integers between 0 and n which are prime to n, with the group operation
being multiplication modulo n.

• D2n is the group with 2n elements

1, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s.

The group operation is determined by the relations rn = s2 = 1 and sr = rn−1s.

• Sn denotes the group of all permutations of {1, . . . ,n} (with the group operation being
composition).

• If p is a prime, then Fp is the set {0, 1, . . . , p−1}, with addition and multiplication modulo p.
GL2(Fp) is the group of 2×2 invertible matrices with entries inFp, with the group operation
being matrix multiplication.

Question 1.
(a) Give the definition of a group. [3]

Suppose G is a group and g ∈ G. In the rest of this question you may use elementary rules for
manipulating powers of elements.

(b) Give the definition of the cyclic subgroup 〈g〉, and prove that it is a subgroup of G. [6]

(c) In the case where G =U25, find 〈6〉. [4]

(d) Give the definition of the order of g. [2]

(e) Suppose ord
(
g
)

= n < ∞, and m is an integer such that gm = 1. Prove that n divides m. [5]

(f) Suppose ord
(

f
)

= 3, ord
(
g
)

= 2 and f g = g f . What is the order of f g? Justify your
answer. [5]

Question 2. Write an essay on group homomorphisms. [You should include precise definitions
and statements of results, illustrated by examples, and give some proofs.] [25]

© Queen Mary, University of London (2015)



MTH6104 / MTH6104P (2015) Page 3

Question 3.

(a) Give the definition of a normal subgroup and the definition of a simple group. [You do
not need to define what a group or a subgroup is.] [4]

(b) Suppose G is an abelian group of order 60. Prove that G is not simple. [You may use basic
results about the orders of elements of G.] [6]

(c) Now suppose G is a finite group and p is a prime. Give the definition of a Sylow
p-subgroup of G. [2]

(d) Write down a Sylow 2-subgroup, a Sylow 3-subgroup and a Sylow 5-subgroup ofU27. [6]

(e) State Sylow’s Theorem 3 concerning the number of Sylow p-subgroups of a finite group. [3]

(f) Using this theorem, prove that there is no simple group of order 63. [4]

Question 4. Suppose G is a group, H is a subgroup of G and f , g ∈ G.

(a) Define the right coset Hg, and the index of H in G. [4]

(b) Give a precise statement of Lagrange’s Theorem. [2]

(c) Find all the right cosets of {1, r3, rs, r4s} inD12. [5]

(d) Suppose H is a normal subgroup of G. Prove that Hg = gH for every g ∈ G. [5]

(e) Hence show that 〈(1 2 3 4)〉 is not a normal subgroup of S4. [3]

(f) Now let
X =

{
g ∈ S10

∣∣∣ g · 1 = 2
}
.

Find a subgroup H of S10 and g ∈ S10 such that X = Hg. Justify your answer. [In
particular, you should prove that H is a subgroup of S10.] [6]
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Question 5. Suppose G is a group.

(a) Define what it means for two elements of G to be conjugate in G. [2]

(b) Show that (1 2 3)(4 5) and (1 2 5)(3 4) are conjugate in S5. [3]

(c) Give the definition of the centre of G. [2]

(d) Find (with proof) the centre ofD10. [7]

(e) Suppose G/Z(G) is a cyclic group. Prove that G is abelian. [5]

(f) Suppose g ∈ G. Give the definition of the centraliser CG(g). [2]

(g) Suppose g ∈ G but g < Z(G). Show that Z(G) , CG(g) , G. [4]

Question 6. Suppose G is a group and X is a set.

(a) Give the definition of an action of G on X. [3]

Suppose π is an action of G on X, and define a relation ≡ on X by setting x ≡ y if there is g ∈ G
such that πg(x) = y.

(b) Prove that ≡ is an equivalence relation on X. [4]

(c) Suppose x ∈ X. Give the definitions of the orbit and the stabiliser of x under π. [4]

(d) Give an example of a transitive action of C4 on C4. [3]

(e) Give a precise statement of the Orbit–Stabiliser Theorem. [3]

Now let G = GL2(F11). Let X be the set of non-zero column vectors
(
a
b

)
with a, b ∈ F11. Define

an action of G on X by πg(x) = gx. (You may assume that π really is an action.)

(f) Prove that π is transitive. [4]

(g) Hence use the Orbit–Stabiliser Theorem to find |G|. [4]

End of Paper.
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