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In this paper, we use the following notation.

• Cn denotes the cyclic group of order n.

• Q8 is the group {1,−1, i,−i, j,− j, k,−k}, in which

i2 = j2 = k2 = −1, i j = k, jk = i, ki = j, ji = −k, kj = −i, ik = − j.

• GL2(C) is the group of invertible 2 × 2 matrices over C, with the group operation being
matrix multiplication.

Question 1.
(a) Give the definition of a group, and a subgroup. [5]

Suppose G is a group and g ∈ G.

(b) Give the definition of the subgroup of G generated by g, and prove that it is a subgroup
of G. [You may use elementary rules for manipulating powers of elements.] [6]

(c) Give the definition of the order of g. [2]

For the rest of this question, let G be the following group of order 21:

G =
{
1, a, a2, a3, a4, a5, a6, b, ab, a2b, a3b, a4b, a5b, a6b, b2, ab2, a2b2, a3b2, a4b2, a5b2, a6b2

}
,

where a is an element of order 7, b is an element of order 3 and ba = a2b.

(d) Find three elements of G which are conjugate to ab. [5]

(e) Find the elements of 〈ab〉. [4]

[For parts (d) and (e) you should write elements of G in the form aib j as in the above list.]

(f) Is 〈ab〉 a normal subgroup of G? Justify your answer. [3]
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Question 2.

(a) Give the definition of the symmetric group Sn. [3]

(b) Suppose f , g ∈ S5 are defined by

f =


1 2 3 4 5
↓ ↓ ↓ ↓ ↓

3 2 1 5 4

 , g =


1 2 3 4 5
↓ ↓ ↓ ↓ ↓

1 3 5 2 4

 .
Write down g, g−1 and f g f−1 in disjoint cycle notation. [4]

(c) Give the definition of a transposition. [2]

(d) Give the definition of the alternating groupAn, and prove thatAn P Sn. [7]

(e) Suppose h ∈ Sn. Explain how you can use the disjoint cycle notation for h to find the
order of h and to find whether h ∈ An. [3]

(f) Suppose N P A6, and that N contains the element (1 3 5)(2 4 6). Prove that N contains a
3-cycle. [You may not assume thatA6 is simple.] [6]

Question 3. Suppose G is a group.

(a) Suppose X is a set. Give the definition of an action of G on X. [3]

(b) Suppose n is a positive integer, and let X be the set of all subsets of G of size n. Define an
action of G on X by

πg
(
{g1, . . . , gn}

)
= {gg1, . . . , ggn}.

Prove that π really is an action. [5]

(c) Suppose π is an action of G on X, and x ∈ X. Give the definition of the orbit of x and the
stabiliser of x. [4]

(d) State and prove the Orbit–Stabiliser Theorem. [You may assume that a stabiliser is a
subgroup, and you may use Lagrange’s Theorem.] [8]

(e) Use the Orbit–Stabiliser Theorem to find the order of the symmetry group of a cube. [5]
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Question 4. [In this question, you may assume any results you need about actions of groups.]
Suppose p is a prime.

(a) What does it mean to say that a finite group is a p-group? [2]

(b) Describe a group G of order p2 which is not isomorphic to Cp2 . [You should be explicit
about what the underlying set and the binary operation are, but you do not have to prove that G
is a group.] Explain how you know that G is not isomorphic to Cp2 . [4]

(c) Give the definition of a Sylow p-subgroup. [2]

(d) Give precise statements of all the Sylow Theorems. [7]

(e) Using one of the Sylow Theorems, show that:

• there is only one group of order 87 up to isomorphism, and

• there is no simple group of order 56.

[You may assume a general result relating the order of a group to the orders of its elements.] [10]

Question 5. Suppose G is a group, g ∈ G and N,H 6 G.

(a) Given the definition of the left coset gH. [2]

(b) Prove that if a, b, c ∈ gH then ab−1c ∈ gH. [3]

(c) Give the definition of the set NH. [2]

(d) Prove that if N,H P G, then NH P G. [7]

(e) Give an example of a group G with N,H 6 G such that NH is not a subgroup of G. [You do
not have to prove that N and H are subgroups, but you should prove that NH is not a subgroup.] [5]

(f) Now suppose G = GL2(C), and let

N =

〈(
0 1
−1 1

)〉
, H =

〈(
0 i
i 0

)〉
.

Find all the left cosets of H in NH (which is a subgroup of G in this case). [6]
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Question 6. Suppose G and H are groups.

(a) Give the definitions of the following:

• a homomorphism from G to H;

• an isomorphism from G to H;

• an automorphism of G;

• the automorphism group of G. [5]

(b) Suppose φ : G→ H is a homomorphism, and L 6 H. Prove that φ(φ−1(L)) = L ∩ Imφ. [4]

(c) Give a precise statement of the Correspondence Theorem. [4]

(d) Let G = C50. Find all the subgroups of G, and draw a diagram showing which
subgroups contain which others. [You do not have to prove anything.] [4]

(e) Let φ : C50 → C50 be the homomorphism which sends g to g5 for every g ∈ C50. Find
Imφ and ker(φ), and show how subgroups correspond under the Correspondence
Theorem. [You do not have to prove anything.] [4]

(f) Give an example of an outer automorphism φ of Q8 such that φ(i) = i. [You do not have to
prove anything, but should you say where each element of Q8 maps to.] [4]

End of Paper.

© Queen Mary, University of London (2014)


