Outline answers for MTH6140 Exam Jan 2023

Q1. (a) U is nonempty as $f=0$ obeys the conditions. And at $a=0,2,(f+g)(a)=$ $f(a)+g(a)=0+0=0,(c f)(a)=c f(a)=c 0=0$ if $f, g \in U$. So this meets the subspace test. (b) $a u_{1}+b u_{2}=a\left(x^{2}-2 x\right)+b\left(x^{3}-2 x^{2}\right)=b x^{3}+(a-2 b) x^{2}-2 a x$. So this $=0$ implies $b, a=0$ by coeffs of x^{3} and x. Hence l.i.
(c) As U is 2 -dimensional and u_{1}, u_{2} l.i., they must be a basis and hence span.
(d) Over $\mathbb{F}_{2}, u_{1}=x^{2}$ and $u_{2}=x^{3}$ are l.i. as part of the standard basis of V. But now U is 3 -dimensional so they cannot span (namely, $x \in U$ is not in the span of u_{1}, u_{2}).

Q2. (a) Bookwork to define $U+W, U \oplus W$.
(b) $\operatorname{dim}(U)=1$ as U is a line, since intersection of two different planes (or solve for U as $z=-3 x$ and $y=5 x$ for x free), while $\operatorname{dim}(W)=2$ as a plane. $U \cap W=\{0\}$ as the line U through the origin is not in the plane W (or the joint solution of $0=3 x-y+z=5 x$ requires $x=0$).
(c) Yes, $\operatorname{dim}(U+W)=\operatorname{dim}(U)+\operatorname{dim}(W)-\operatorname{dim}(U \cap W)=1+2-0=3=\operatorname{dim}(V)$. So $U+W \subseteq V$ and has same dimension, hence $=V$.
(d) Yes, this is a direct sum since we have seen that $V=U+W$ and $U \cap W=\{0\}$.
(e) Yes, by Lectures, $V=U \oplus W$ implies projection $\pi: V \rightarrow V$ with Image $(\pi)=U$ and $\operatorname{ker}(\pi)=W$. Fixing the standard basis of V, π corresponds to a matrix Π which obeys $\Pi^{2}=\Pi$ and has ColumnSpace $(\Pi)=U$.

Q3. (a) $S_{2}=\{\operatorname{id},(12)\}$, so $\operatorname{det}(A)=\operatorname{sign}(\mathrm{id}) a_{11} a_{22}+\operatorname{sign}((12)) a_{12} a_{21}=a_{11} a_{22}-a_{12} a_{21}$ as $\operatorname{sign}((12))=-1$ as for any transposition.
(b) By Lectures, det is linear in the first column, so this is $\left|\begin{array}{ll}a & c \\ d & f\end{array}\right|+\left|\begin{array}{ll}b & c \\ e & f\end{array}\right|$.
(c) E.g. in sequence $c_{1} \leftrightarrow c_{2}, c_{3}-2 c_{1}, c_{4}-3 c_{1}, r_{2}-2 r_{1}, r_{2} / 3, c_{3}+c_{1}, c_{4}+2 c_{2}$ to get $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$.
(d) $\operatorname{ker}(\alpha)$ with respect to the basis means solution of $\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0\end{array}\right] \cdot[a, b, c, d]^{t}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, solved by $d=-(b+2 c) / 3, a=-(2 b+c) / 3$, for any b, c. So $\nu=2$. Then $\rho=\operatorname{dim}(V)-\nu=4-2=2$ by rank + nullity theorem.

Q4. (a) Bookwork defn of $m_{A}(x)$.
(b) First calculate $p_{A}(x)=\operatorname{det}\left(x I_{3}-A\right)=(x-3)\left(x^{2}-2 x+2\right)=(x-3)\left(x-\lambda_{+}\right)\left(x-\lambda_{-}\right)$where $\lambda_{ \pm}=1 \pm i$. As m_{A} has the same set of roots it must equal p_{A}.
(c) As m_{A} is the product of distinct linear factors, A diagonalisable by Lectures.
(d) Over $\mathbb{F}_{2}, p_{A}(x)=(x+1) x^{2}$ from the first expression, as $2=0$ in the field. Now check $\left(A+I_{2}\right) A \neq 0$ hence $m_{A}=p_{A}$ again (and not $(x+1) x$). But this has a repeated linear factor so A not diagonalisabe.

Q5. (a) $A=A^{+}+A^{-}$where $A^{ \pm}=\left(A \pm A^{t}\right) / 2$. Hence $q_{A}=q_{A^{+}}+\sum_{i, j}\left(\frac{a_{i j}-a_{j i}}{2}\right) x_{i} x_{j}=$ $q_{A^{+}}$since the second term is 0 by cancelation with the same summand with $i \leftrightarrow j$. So the antisymmetric part of A does not affect q_{A} and we can suppose wlog that it is symmetric.
(b) $q_{A}=x^{2}+4 x z+2 y^{2}-z^{2}=(x+2 z)^{2}-5 z^{2}+2 y^{2}=u^{2}+v^{2}-w^{2}$ for $v=\sqrt{2} y, w=\sqrt{5} z$, $u=x+2 z$ a linear change of variables. By Lectures this is equivalent to putting A into canonical form for congruence and we see $s=2, t=1$.
(c) $q(0,0,1)=-5<0$ so q is not positive definite, which is needed for its associated bilinear form to define an inner product.
(d) E.g. change A to $\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 5\end{array}\right]$ then $q_{A}=(x+2 z)^{2}+2 y^{2}+z^{2}$ similarly to the above. But this is now $s=3, t=0$ so positive definite.

