Outline answers for MTH6140 Exam Jan 2022

Q1. (a) We require $a_{i j}=-a_{j i}$, hence $a_{i i}=-a_{i i}=0$ which for \mathbb{R} means $a_{i i}=0$. Hence $A=\left(a_{i j}\right)$ is determined by a_{12}, a_{13}, a_{23} chosen freely and $a_{21}=-a_{12}$ etc. So V is 3 -dimensional. (b) write $a A+b B+c C=0$ where A, B, C are the three matrices shown. This gives $a+b=$ $0, a+c=0, b+c=0$ hence $b=-a, c=-a$ and $-2 a=0$. So over \mathbb{R}, all are zero, hence l.i. By dimensions, they then form a basis. (c) Over \mathbb{F}_{2}, the last equation does not imply $a=0$ and a solution is $a=b=c=1$, so l.d. (d) The space is 6 dimensional: as well as the three obvious matrices from (a) (with just one of a_{12}, a_{13}, a_{23} set to 1 and $a_{21}=a_{12}$ etc.) there are the three diagonal matrices with just one of a_{11}, a_{22}, a_{33} set to 1 .

Q2. (a) Bookwork. Either define what means $V=U+W$ and ask for $U \cap W=\{0\}$ or say every element $v \in V$ can be uniquely written as $v=u+w$ with $u \in U$ and $w \in W$. (b) $U=\mathrm{x}$-axis $=\langle(1,0)\rangle, W=\mathrm{y}$-axis $=\langle(0,1)\rangle$. Every element $v=(x, y) \in V$ can be uniquely written $v=x(1,0)+y(0,1)$. Or, $U \cap W$ is the origin as the intersection of two lines so $=\{0\}$. (c) U, W as in (b) and $X=\langle(1,1)\rangle=$ the line at 45 degree slope. The intersections with U, W are again just the origin and every $v=(x, y)=x(1,0)+y(0,1)+0(1,1) \in U+W+X$ so $V \subseteq U+W+X$, and $U+W+X \subseteq V$ by definition, so $V=U+W+X$. (d) No, since if $V=(U \oplus W) \oplus X$ it would have dimension $\operatorname{dim}(U \oplus W)+\operatorname{dim}(X)=2+1=3$ but V is 2-dimensional.

Q3. (a) The matrix C has the first and second rows swapped so $c_{1 i}=0$ unless $i=2, c_{2 i}=0$ unless $i=1$ and $c_{j i}=0$ unless $i=j$ for $j=3, \cdots, n$ (and has value 1 when not zero). Hence in the Leibniz formula $c_{1 \pi(1)} c_{2 \pi(2)} \cdots c_{n \pi(n)}=0$ unless $\pi(1)=2, \pi(2)=1$ and $\pi(j)=j$ for $j>2$, i.e. only $\pi=(12)$ contributes. In this case the product is 1 and $\operatorname{sign}(\pi)=-1$ so $\operatorname{det}(C)=-1$. (b) Write $v=a v_{1}+b v_{2}+c v_{3}$ then $\alpha(v)=a \alpha\left(v_{1}\right)+b \alpha\left(v_{2}\right)+c \alpha\left(v_{3}\right)=(2 a+b+c) w_{1}+(a-b+c) w_{2}$. To be zero needs $2 a+b+c=0, b=a+c$, hence $a+2 b=0$ giving $\operatorname{ker}(\alpha)=\left\langle 2 v_{1}-v_{2}-3 v_{3}\right\rangle$. This is 1 -dimensional so $\nu=1$. (c) $\rho=\operatorname{dim}(V)-\nu=3-1=2=\operatorname{dim}(W)$ so by dimensions, $\operatorname{Im}(\alpha)=W$. (d) No. The matrix would need to be 2×3 matrix not a 3×2 so this is not possible. Or $\rho=\operatorname{rank}(A)=2$ with respect to any basis but the matrix shown has rank 1 . The latter was the intended answer as it had been intended to show a 2×3 matrix, but accepted either one.

Q4. (a) Bookwork from lectures that $p_{A}(x)=p_{P A P^{-1}}(x)$ hence this is true for the coefficients of each power of x (as these are a basis of the degree $\leq n$ polynomials in x). Hence $c\left(P A P^{-1}\right)=$ $c(A)$ in particular. (b) By the Cayley-Hamilton theorem $p_{A}(A)=0$ so $A^{3}-\operatorname{Trace}(A) A^{2}-$ $\operatorname{det}(A) I_{3}=0$ as $c(A)=0$. Hence $A^{2}\left(A-\operatorname{Trace}(A) I_{3}\right)=\operatorname{det}(A) I_{3}=\left(A-\operatorname{Trace}(A) I_{3}\right) A^{2}$. As $\operatorname{det}(A) \neq 0$ we can divide through then this says A^{2} has the inverse $\left(A-\operatorname{Trace}(A) I_{3}\right) / \operatorname{det}(A)$. (c) Expanding the determinant say on the top row, $p_{A}(x)=(x-1)(x(x+1)-2)-1(-3(x+1))=$ $x^{3}+5$. (d) This has a single real root $\lambda=$ minus the cube root of 5 . The remaining roots must be complex so the $p_{A}=\left(x-\lambda I_{3}\right) q(x)$ where $q(x)$ has no real roots so does not factorise. m_{A} must divide p_{A} and $A-\lambda I_{3} \neq 0$ so m_{A} is not this, hence must be all of p_{A}. Hence m_{A} is not a product of linear factors, hence A is not diagonalisable by a result in lectures.

Q5. (a) Bookwork, it means $B=P^{T} A P$ for an invertible $n \times n$ matrix P (b) Bookwork, $q_{B}\left(x^{\prime}\right)=\sum_{i j} x_{i}^{\prime} b_{i j} x_{j}^{\prime}=\sum_{i j} x_{i} a_{i j} x_{j}=q_{A}(x)$ for some linear change of variables $x_{i} \rightarrow x_{i}^{\prime}$ (explicitly, $x_{i}=\sum_{j} P_{i j} x_{j}^{\prime}$). (c) $q=(x+y)^{2}+2 y^{2}+z^{2}=x^{\prime 2}+y^{\prime 2}+z^{\prime 2}$ where $x^{\prime}=x+y, y^{\prime}=\sqrt{2} y, z^{\prime}=z$. Either quote Sylveters that after this change of variables q is in the standard form with $s=3=$ $\operatorname{dim}(V), t=0$ hence positive definite, or argue directly that $q\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \geq 0$ as a sum of squares and $=0$ only if $x^{\prime}=y^{\prime}=z^{\prime}=0$, which is iff $x=y=z=0$. Hence this meets the definition that $q(x, y, z)$ is positive definite. (d) We need $w_{1} \cdot w_{2}=a c v_{1} \cdot v_{2}+b c v_{2} \cdot v_{2}=a c+3 b c=0$ and $w_{1} \cdot w_{1}=a^{2} v_{1} \cdot v_{1}+b^{2} v_{2} \cdot v_{2}+2 a b v_{1} \cdot v_{2}=a^{2}+3 b^{2}+2 a b=1$ and $w_{2} \cdot w_{2}=c^{2} v_{1} \cdot v_{1}=3 c^{2}=1$. The last gives $c=1 / \sqrt{3}$ (say) then the first gives $a=-3 b$, then the second gives $b=1 / \sqrt{6}$. Hence $w_{1}=-\frac{3}{\sqrt{6}} v_{1}+\frac{1}{\sqrt{6}} v_{2}, w_{2}=\frac{1}{\sqrt{3}} v_{2}, w_{3}=v_{3} .\left(\right.$ Also, $w_{3} \cdot w_{3}=v_{3} \cdot v_{3}=1$ and $w_{3} \cdot w_{1}=w_{3} \cdot w_{2}=0$.)

