

January Examination Period 2022-23

ECN-115—Mathematical Methods in Economics and Finance Duration: 2 hours

YOU ARE NOT PERMITTED TO READ THE CONTENTS OF THIS QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY AN INVIGILATOR

Answer ALL questions

Calculators are not permitted in this examination. Complete all rough workings in the answer book and cross through any work that is not to be assessed.

Possession of unauthorised material at any time when under examination conditions is an assessment offence and can lead to expulsion from QMUL. Check now to ensure you do not have any notes, mobile phones, smartwatches or unauthorised electronic devices on your person. If you do, raise your hand and give them to an invigilator immediately.

It is also an offence to have any writing of any kind on your person, including on your body. If you are found to have hidden unauthorised material elsewhere, including toilets and cloakrooms it will be treated as being found in your possession. Unauthorised material found on your mobile phone or other electronic device will be considered the same as being in possession of paper notes. A mobile phone that causes a disruption in the exam is also an assessment offence.

EXAM PAPERS MUST NOT BE REMOVED FROM THE EXAM ROOM

Examiner: Evgenii Safonov

Page 2 ECN-115 (2023)

Question 1

Describe the Principle of Mathematical Induction.

[10 marks]

Question 2

Calculate the following limit:

$$\lim_{n \to \infty} \left(\frac{(2n+1)(3n+2)}{n^2 + (n-1)(n+4)} \right)$$

[5 marks]

Question 3

Calculate the derivative of the function $f:(0,\infty)\to\mathbb{R}$ at point x_o .

a) When the function f is given by

$$f(x) = \frac{x^2 + 1}{x}$$

at point $x_o = 2$.

[5 marks]

b) When the function f is given by

$$f(x) = x^{ln(x)}$$

at point $x_o = e$, where e = 2.71828... is the Euler's number (the base of the natural logarithm).

[7 marks]

Question 4

a) State the Fundamental Theorem of Calculus (You may use your own way to describe the theorem, but try to be as formal as you can).

[9 marks]

b) Calculate the following integral:

Question 5

Consider a two-variable function $f:(0,1)\times(0,1)\to\mathbb{R}$ (thus, the variables x,y can take values such that 0< x<1 and 0< y<1) given by

$$f(x,y) = \ln\left(x^2 \cdot (1-y)\right)$$

Calculate the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at an arbitrary point of the domain of the function f. Simplify your answers when possible.

[8 marks]

ECN-115 (2023) Page 3

Question 6

Consider a function $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} e \cdot x - e^x & \text{if } x \le a \\ \frac{x^2}{2} + \frac{e - 4}{2} - \sqrt{e} & \text{if } x > a \end{cases}$$
 (1)

where e=2.71828... is the Euler's number (the base of the natural logarithm), and the parameter a is such that $a \in [0,2]$.

- a) Are the following propositions true? Provide (short, to save your time) arguments why or why not.
 - i) For any value of the parameter $a \in [0, 2]$, the function f is continuous (that is, continuous at all points $x \in \mathbb{R}$).

[4 marks]

ii) The function f is differentiable at all points x such that $x \in (-\infty, a) \cup (a, \infty)$.

[4 marks]

Suppose now that we want to maximise the function f given by eq. (1) over the set X = [0, 2].

b) State the Weierstrass Theorem that is related to the analysis of the problem (a version that has been studied in the lectures; but if you formulate a more general version, it is also fine).

[7 marks]

c) Can we use the Weierstrass Theorem to argue that $\max_{x \in [0,2]} f(x)$ exists? Why or why not?

[3 marks]

d) Find $\max_{x \in [0,2]} f(x)$ (if it exists). Your answer should, in general, depend on the parameter $a \in [0,2]$. Hint: you may analyse two auxiliary maximisation problems: maximising the function f over the set [0,a], and maximising f over (a,2]. It might be useful to note that $e \cdot \frac{1}{2} - e^{\frac{1}{2}} = \frac{2^2}{2} + \frac{e-4}{2} - \sqrt{e}$. Note also that $\sqrt{e} = 1.6487...$, and e/2 = 1.3591...

[20 marks]

e) Is there a value of the parameter $a \in [0,2]$ such that there are two maximisers of the function f over the set X = [0,2] (that is, there are two points at which function f attains its maximum over the set X)? If yes, what is this value?

[3 marks]

End of Paper