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Question 1
Describe the Principle of Mathematical Induction.

[10 marks]

Question 2
Calculate the following limit:

lim
n→∞

(
(2n+ 1)(3n+ 2)

n2 + (n− 1)(n+ 4)

)
[5 marks]

Question 3
Calculate the derivative of the function f : (0,∞) → R at point xo.

a) When the function f is given by

f(x) =
x2 + 1

x

at point xo = 2.
[5 marks]

b) When the function f is given by
f(x) = xln(x)

at point xo = e, where e = 2.71828... is the Euler’s number (the base of the natural logarithm).
[7 marks]

Question 4

a) State the Fundamental Theorem of Calculus (You may use your own way to describe the theorem,
but try to be as formal as you can).

[9 marks]

b) Calculate the following integral:
4∫
0

1

1 + 3
√
x
dx

[15 marks]

Question 5
Consider a two-variable function f : (0, 1) × (0, 1) → R (thus, the variables x, y can take values such
that 0 < x < 1 and 0 < y < 1) given by

f(x, y) = ln
(
x2 · (1− y)

)
Calculate the partial derivatives

∂f

∂x
and

∂f

∂y
at an arbitrary point of the domain of the function f . Simplify

your answers when possible.
[8 marks]
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Question 6
Consider a function f : R→ R given by

f(x) =


e · x− ex if x ≤ a

x2

2
+

e− 4

2
−
√
e if x > a

(1)

where e = 2.71828... is the Euler’s number (the base of the natural logarithm), and the parameter a is
such that a ∈ [0, 2].

a) Are the following propositions true? Provide (short, to save your time) arguments why or why not.

i) For any value of the parameter a ∈ [0, 2], the function f is continuous (that is, continuous at
all points x ∈ R).

[4 marks]
ii) The function f is differentiable at all points x such that x ∈ (−∞, a) ∪ (a,∞).

[4 marks]

Suppose now that we want to maximise the function f given by eq. (1) over the set X = [0, 2].

b) State the Weierstrass Theorem that is related to the analysis of the problem (a version that has
been studied in the lectures; but if you formulate a more general version, it is also fine).

[7 marks]

c) Can we use the Weierstrass Theorem to argue that max
x∈[0,2]

f(x) exists? Why or why not?

[3 marks]

d) Find max
x∈[0,2]

f(x) (if it exists). Your answer should, in general, depend on the parameter a ∈ [0, 2].

Hint: you may analyse two auxiliary maximisation problems: maximising the function f over the

set [0, a], and maximising f over (a, 2]. It might be useful to note that e · 1
2
−e

1
2 =

22

2
+
e− 4

2
−
√
e.

Note also that
√
e = 1.6487..., and e/2 = 1.3591...

[20 marks]

e) Is there a value of the parameter a ∈ [0, 2] such that there are two maximisers of the function f
over the setX = [0, 2] (that is, there are two points at which function f attains its maximum over
the set X)? If yes, what is this value?

[3 marks]

End of Paper

End of Examination/ Evgenii Safonov


