

Main Examination period 2023 – January – Semester A

MTH6115/MTH6115P: Cryptography

Duration: 2 hours

The exam is intended to be completed within **2 hours**. However, you will have a period of **4 hours** to complete the exam and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be **handwritten** and should **include your student number**. Only one attempt is allowed – **once you have submitted your work, it is final**.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a **single PDF file**, and submit this file using the tool below the link to the exam;
- e-mail a copy to **maths@qmul.ac.uk** with your student number and the module code in the subject line;

Examiners: B. Noohi, S. Sasaki

MTH6115/MTH6115P (2023)

Question 1 [25 marks].

(a) In the following Caesar cipher the most frequent letter corresponds to e. Decrypt it. Show your working.

XBLLU THYFB UPCLY ZPAF

(b)	Find an affine cipher $\theta_{a,b}$ on the English alphabet such that application of the cipher $\theta_{a,b}$ followed by $\theta_{7,1}$ is equivalent to applying the affine cipher $\theta_{9,3}$. Show your working.	[6]
(c)	Consider the alphabet $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}.$	
	(i) Determine the permutation on \mathbb{Z}_5 resulting from applying the affine cipher $\theta_{3,2}$. Show your working.	[3]
	(ii) Find a substitution table on this alphabet whose corresponding stream cipher is equivalent to the affine cipher $\theta_{3,2}$.	[3]
(d)	Let N be a positive integer and consider the alphabet \mathbb{Z}_N .	
	(i) Explain why the addition table corresponding to the binary operation $i \oplus j = i - j \pmod{N}$ is a Latin square.	[3]
	(ii) Find the adjugate of this Latin square. Show your working.	[3]
	(iii) Is this Latin square suitable for a one-time pad on the alphabet \mathbb{Z}_N ? Justify your answer.	[3]

[4]

MTH6115/MTH6115P (2023)

Question 2 [25 marks].

(a) Alice is using a one-time pad on the alphabet Z₂ = {0,1} with addition modulo
2. The key for this one-time pad is generated by a primitive 5-bit shift register. Eve intercepts the following ciphertext:

000110001011011.

Her spies have informed her that the initial part of the plaintext is

Decipher the full ciphertext. Show your working.[8](b) Determine (with proof) whether $x^5 + x^3 + 1$ is[3](i) irreducible over \mathbb{Z}_2 ,[3](ii) primitive.[3](c) Write down a pseudo-noise sequence of length 31, explaining carefully why
your sequence is pseudo-noise. Determine the number of length 2 runs of 0s in
this sequence.[7](d) Explain what goes wrong if in a public-key cryptosystem the *go public* function
 $g: S \to K$ from the set of secret keys to the set of public keys is in the
complexity class ExpTime.[4]

Question 3 [25 marks].

- (a) Paul has written an algorithm that finds the greatest common divisor of two polynomials $f(x) = x^3 + ax^2 + bx + c$ and $g(x) = x^3 + a'x^2 + b'x + c'$ with positive integer coefficients in aa' + bb' + cc' steps. Is this a polynomial time algorithm? Justify your answer [5]
- (b) Assume that multiplying and adding two positive integers can be performed in polynomial time. Explain why the problem of computing the product of two arbitrary polynomials is in class P.
- (c) Calculate $2^{1212} \pmod{9211}$, reducing it to a positive number less than 9211. Show your calculations. [Hint. 9211 = (151)(61).]
- (d) Consider the map $T_{77} : \mathbb{Z}_{9211} \to \mathbb{Z}_{9211}, T_{77}(x) \equiv x^{77} \pmod{9211}$. Is this map surjective? Justify your answer. How many positive integers e < 300 are there such that $T_e : \mathbb{Z}_{9211} \to \mathbb{Z}_{9211}$ is injective? (Recall that $T_e(x) \equiv x^e \pmod{9211}$.) [9]

© Queen Mary University of London (2023)

Continue to next page

[6]

MTH6115/MTH6115P (2023)

Page 4

Question 4 [25 marks].

(a)	Explain what goes wrong if the modulus N used in RSA is divisible by 25.	[3]
(b)	Alice and Bob are using the prime $p = 89$ and a primitive root $g \mod p$ for the Diffie-Hellman key establishment. However, they suspect that Eve might be tampering with their communication. Alice's secret number is $a = 7$ and Bob's is $b = 4$. Alice receives 5 from Bob and Bob receives 11 from Alice. Prove that the communication has indeed been tampered with by Eve.	[6]
(c)	Bob has chosen $p = 89$, $g = -8$ and $a = 16$ for his El-Gamal key. Apart from the numbers being small, give another reason why this is a poor choice of key.	[6]
(d)	In the previous part, what is Bob's public key? Encrypt the message $x = 5$ for sending to Bob, with your random <i>k</i> being the sum of the last two digits of your student id. Simplify your answer as much as possible. [Hint. You may find $4^6 \equiv 16^3 \equiv 2 \pmod{89}$ useful in your calculations.]	[6]
(e)	Alice and Bob are using the knapsack cipher and Bob's public key is	
	(49, 23, 1, 110, 5, 425, 260, 811).	
	Alice sends the message 1126 to Bob. Decrypt it. Show your working.	[4]

End of Paper.