AFFINE SUBSTITUTIONS

- For fixed integers a and b, with $\operatorname{gcd}(a, 26)=1$, we can define a substitution by $\theta_{a, b}: x \mapsto a x+b(\bmod 26)$. In this formula, we assume that the English alphabet is enumerated by $0,1,2, \ldots, 25$. ($\mathrm{Eg}, \mathrm{a}=0$ and $\mathrm{z}=25$.)
- These are slightly harder than Caesar ciphers, but still quite easy to solve.

Example. Suppose we have discovered (say, by frequency analysis) that the letters $\mathrm{c}=2$ and $\mathrm{f}=5$ in the plaintext have been encrypted to $\mathrm{H}=7$ and $\mathrm{Q}=16$ in the ciphertext, respectively. This would be enough to determine the affine substitution. Namely, we need to solve this system of congruence equations to find a and b :

$$
\begin{gathered}
2 a+b \equiv 7 \quad(\bmod 26) \\
5 a+b \equiv 16 \quad(\bmod 26)
\end{gathered}
$$

The solutions is $a=3, b=1$. The affine substitutions $\theta_{3,1}$ can be depicted as:

$$
\begin{aligned}
& \theta_{3,1}: \quad 0 \mapsto \quad 1 \\
& 1 \mapsto \quad 3(1)+1 \\
& \text { Ladd } 3 \\
& 2 \mapsto \quad 3(2)+1 \\
& \text { Ladd } 3 \\
& 3 \mapsto \quad 3(3)+1
\end{aligned}
$$

Figure 1. Visualizing the affine map $\theta_{3,1}: x \mapsto 3 x+1(\bmod 26)$

