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MTH5123 Differential Equations

Solution to the Exam Problems 2016

All problems are either already seen in example classes, or moderate modifications of those.

1. (a) (i) Find all functions f(y) for which the following differential equation becomes
exact:

ex f(y) + x2 + (ex cos y + y)
dy

dx
= 0 (1)

(4 points)

Solution: Denoting P (x, y) = ex f(y)+x2, Q(x, y) = ex cos y+y [1p] we
can rewrite the above equation in the standard form P (x, y)+Q(x, y) dy

dx
=

0. We then have ∂P
∂y

= ex f ′(y) whereas ∂Q
∂x

= ex cos y [1p], hence the

equation is exact only if f ′(y) = cos y or equivalently f(y) = sin y + C
[2p], with any constant C.

(ii) Suppose, f(y) is chosen so that the equation (1) is exact and f (π) = 0. Solve
(1) in implicit form. (8 points)

Solution: The condition f(π) = C = 0, so that f(y) = sin y [1p]. Then
the general solution should be looked for in implicit form as F (x, y) =
Const where

F =
∫
P (x, y) dx =

∫ (
ex sin y + x2

)
dx = ex sin y +

x3

3
+ g(y), [2p]

where g(y) is to be determined from the condition Q = ∂F
∂y

= ex cos y+g′(y)

[1p]. We therefore conclude that g′(y) = y [1p] so that g(y) = y2

2
[2p].

Thus the solution in implicit form is ex sin y + x3

3
+ y2

2
= Const [1p].
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b) Consider the initial value problem (IVP)

(x+ 2)
dy

dx
+ (y + 2)2/3 = 0, y(0) = b . (2)

where b is a real parameter and we assume b ≥ −2.

(i) Find the value of the parameter b such that the corresponding IVP may have
more than one solution and explain your choice. Confirm your choice by giv-
ing explicitly at least two different solutions of the IVP for such a value of the
parameter. (8 points)

Solution: First, we rewrite the above ODE in the standard form: dy
dx

=

f(x, y), with f(x, y) = − (y+2)2/3

x+2
[1p]. The solution to IVP is unique if

the function f(x, y) is continuous in some domain in the xy plane centered
at the point with coordinates x = 0, y = b [1p] and the modulus of its
partial derivative |∂f

∂y
| = 2

3
1
|x+2|(y + 2)−1/3 is bounded in the same domain

[1p]. The second condition is certainly violated if y+ 2 = 0, implying that
for b = −2 we may expect non-uniqueness. [1p]. Solving the differential
equation by the separation of variables method we get the general solution:∫ dy

(y + 2)2/3
= −

∫
dx

1

x+ 2
⇒ 3(y + 2)1/3 = − ln |x+ 2|+ C [2p]

The ”dangerous” initial condition y(0) = −2 fixes C = ln 2, so that a
solution to IVP is y = 1

27
(ln 2− ln |x+ 2|)3 − 2 [1p].

On the other hand the constant solution y(x) = −2 solves the same IVP
[1p].

(ii) Use the Picard-Lindelöf theorem to verify that the existence and uniqueness
of the solution for the IVP (2) with b = 0 is guaranteed in the rectangular
domain D := {|x| < A, |y| < B} with A = 1/2 and B = 1. (5 points)

Solution: According to the Picard-Lindelöf theorem to ensure uniqueness

and existence of the solution the right-hand side f(x, y) = − (y+2)2/3

x+2
has

to be continuous in D, which is indeed the case since the dangerous point
x = −2 is not in D (as |−2| > 1/2)[1p]. Further, the modulus of its partial
derivative |∂f

∂y
| = 2

3
1
|x+2|(y+2)−1/3 is bounded in the same domain as y = −2

does not belong to D (as | − 2| > 1)[1p]. Finally, the parameters A and
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B must satisfy the inequality A < B/M , where M = max(x,y)∈D|f(x, y)|,
which for given A = 1/2, B = 1 is equivalent to M < 2[1p]. This is indeed
ensured for our choice of A,B as we have

M = max(x,y)∈D
(y + 2)2/3

|x+ 2|
=
max|y|<1(y + 2)2/3

min|x|< 1
2
|x+ 2|

=
32/3

3/2
=

2

31/3
< 2, [2p]

since obviously 31/3 > 1.
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2. Write down the solution to the following Boundary Value Problem (BVP) for the second
order non-homogeneous differential equation

x2 d
2y

dx2
+ 2x

dy

dx
= f(x), y(1) = 0, y′(3) = 0

by using the Green’s function method along the following lines:

a) Using that the left-hand side of the ODE is in the form of an Euler-type equation
determine the general solution of the associated homogeneous ODE. (6 points)

Solution: According to the general method of solving the Euler-type equation
we introduce the new variable by x = et and the new function z(t) so that

z(t) = y(et), ⇒ dz

dt
= ety′,

d2z

dt2
= ety′ + e2ty′′

From the above we find correspondingly that y′ = e−tż, y′′ = e−2t(z̈−ż) [1p].
Substituting to the Euler-type equation reduces the latter to a homogeneous
equation with constant coefficients: [1p]

e2t · e−2t(z̈ − ż) + 2et · e−tż = z̈ + ż = 0

The corresponding characteristic equation λ2 +λ = λ(λ+1) = 0 has two roots:
λ1 = 0 and λ2 = −1 and the general solution is given by:

z(t) = C1 + C2e
−t, [1p]

for arbitrary constants C1 and C2. Finally, substituting t = lnx gives [1p]

y(x) = C1 +
C2

x
, ⇒ y′(x) = −C2

x2
, [2p] .

b) Formulate the corresponding left-end and right-end initial value problems and use
their solutions to construct the Green’s function G(x, s). (14 points)

Solution: The left-end boundary condition y(1) = 0 is imposed at x1 = 1.
By comparing it to the standard form αy′(x1) + βy(x1) = 0 we conclude that
α = 0, β = 1 [1p]. Then the left-end initial value problem for the function
yL(x) is formulated as

yL(x1) = α, y′L(x1) = −β, ⇒ yL(1) = 0, y′L(1) = −1 [2p]
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Substituting here the general solution of the homogeneous equation yields C2 =
1, C1 = −1 [1p] so that

yL(x) = −1 +
1

x
, [1p]

Obviously, x2 = 3 and by comparing the right-end boundary condition y′(3) =
0 to the standard form γy′(x2) + δy(x2) = 0 we conclude that γ = 1, δ = 0[1p].
Then the right-end initial value problem for the function yR(x) is formulated
as

yR(x2) = γ, y′R(x2) = −δ, ⇒ yR(3) = 1, y′R(3) = 0, [1p]

which now gives C2 = 0, C1 = 1 and finally

yR(x) = 1, [2p]

Now we can use yL(x), yR(x) for constructing the Green’s function G(x, s).
First we calculate the Wronskian

W (s) = yL(s)y′R(s)− yR(s)y′L(s) =
1

s2
, [1p]

We also should take into account that from the original ODE a2(s) = s2 so
that a2(s)W (s) = 1 [1p] and we have

A(s) = yR(s)/ (a2(s)W (s)) = 1, B(s) = yL(s)/ (a2(s)W (s)) = −1+
1

s
, [1p]

Finally the Green’s function is constructed as

G(x, s) =

{
A(s)yl(x), 1 ≤ x ≤ s
B(s)yR(x), s ≤ x ≤ 3

=

{
−1 + 1

x
, 1 ≤ x ≤ s

−1 + 1
s
, s ≤ x ≤ 3

, [2p]

c) Write down the solution to the BVP in terms of G(x, s) and f(x) and use it to
find the explicit form of the solution for f(x) = x2.

(5 points)
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Solution: The solution to the boundary value problem is given by

y(x) =
∫ 3

1
G(x, s) f(s) ds =

∫ x

1
G(x, s) f(s) ds+

∫ 3

x
G(x, s) f(s) ds

=
∫ x

1

(
−1 +

1

s

)
f(s) ds+

(
−1 +

1

x

) ∫ 3

x
f(s) ds , [1p]

substituting here f(x) = x2 and using∫ x

1

(
−1 +

1

s

)
s2 ds =

[
−1

3
s3 +

1

2
s2
]x
1

= −1

3
x3 +

1

2
x2 − 1

6
, [1p]

and ∫ 3

x
s2 ds =

1

3
s3|3x =

1

3
(27− x3) = 9− x3

3
, [1p]

we finally can write the solution in the form

y(x) = −1

3
x3 +

1

2
x2 − 1

6
+

1

3
(27− x3)

(
−1 +

1

x

)
, [1p]

which after simplifying yields

y(x) =
x2

6
− 55

6
+

9

x
, [1p]
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3. Consider a system of two linear first-order ODE:

ẋ = −2x+ y, ẏ = −5x+ 4y . (3)

a) Determine eigenvalues and eigenvectors associated with the system, find equa-
tions for stable and unstable invariant manifolds and sketch the phase portrait.

(11 points)

Solution. We rewrite the system in the matrix form

(
ẋ
ẏ

)
= A

(
x
y

)
where

the matrix A associated with the system is given by A =

(
−2 1
−5 4

)
[1p] The

characteristic equation is (−2− λ)(4− λ) + 5 = λ2 − 2λ− 3 = 0 and has two
real roots λ1 = 3 and λ2 = −1, [1p]. Eigenvector corresponding to λ1 = 3 is
found as (

−2 1
−5 4

)(
p1

q1

)
= 3

(
p1

q1

)
, [2p]

which implies −2p1 + q1 = 3p1, hence q1 = 5p1, [1p] and we can choose for
example p1 = 1 and q1 = 5. For second eigenvalue λ2 = −1 we similarly find(

−2 1
−5 4

)(
p2

q2

)
= −1

(
p2

q2

)
, [2p]

which implies q2 = p2, [1p] so that we can choose, for example p2 = 1, q2 = 1.

As λ1 > 0 the trajectories will be for t→ +∞ parallel to the straight line ( the
”unstable manifold”) given by y = q1

p1
x = 5x [1p], whereas for t → −∞ they

will be parallel to the stable manifold y = q2

p2
x = x [1p]. The corresponding

phase portrait can be sketched as [1p]:

Sketch to be placed here
Description: a diagram of two intersecting invariant manifolds: y = 5x (with
the arrow showing motion along it away from the origin) and y = x (with the
arrow showing motion along it towards the origin)and separating the plane in
4 quadrants. The rest is a bunch of trajectories which are hyperbolas starting
tangent to y = x in all quadrants and flowing finally tangent to y = 5x.
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b) For the nonlinear system

ẋ = f1(x, y), ẏ = f2(x, y)

with
f1(x, y) = (1− y)(2x− y), f2(x, y) = (2 + x)(x− 2y)

show that there exists an equilibrium point with y = −4 and determine its x−coordinate
in the (x, y) plane. Linearize the system around such an equilibrium and determine
its nature (stable vs. unstable) and type (saddle, focus, or node). Describe in
words the shape of trajectories close to the point.

(9 points)

Solution. For y = −4 the right-hand sides f1(x, y), f2(x, y) take the form
f1 = 5(2x + 4) and f2 = (2 + x)(x + 8). We see that for x = −2 both
right-hand sides vanish simultaneously, hence this gives the coordinate of the
equilibrium point in the (x,y) plane as (−2,−4) [1p]. To linearize we need to
evaluate ∂f1

∂x
, ∂f1

∂y
, ∂f2

∂x
, ∂f2

∂y
at the point of equilibrium:

∂f1

∂x
= 2(1−y)|x=−2,y=−4 = 10, [1p]

∂f1

∂y
= (−1−2x+2y)|x=−2,y=−4 = −5 [1p]

∂f2

∂x
= (2 + 2x−2y)|x=−2,y=−4 = 6 [1p] ,

∂f2

∂y
= (−4−2x)|x=−2,y=−4 = 0 [1p] .

The linearized system in the matrix form

(
ẋ
ẏ

)
= A

(
x
y

)
where [1p] A =(

10 −5
6 0

)
. The characteristic equation is now (10 − λ)(−λ) + 30 = λ2 −

10λ+ 30 = 0 with the roots

λ1,2 =
1

2

(
10±

√
100− 120

)
= 5± i

√
5 [1p] .

We see that the eigenvalues are complex conjugate with positive real part,
hence the equilibrium is an unstable focus [1p] and trajectories are spiralling
away from the equilibrium point.[1p]

c) Consider a system of two nonlinear first-order ODE:

ẋ = −y + axy2, ẏ = x− bx2y . (4)
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where a, b are real constants. Find a relation between a and b such that the function
V (x, y) = 1

2
(x2 + y2) can be used as a Lyapunov function ensuring the stability of

such a system in the whole (x, y) plane. (5 points)

Solution. The function V (x, y) = 1
2
(x2 + y2) > 0 for (x, y) 6= (0, 0) [1p] and

its orbital derivative is given by

DfV =
∂V

∂x
ẋ+

∂V

∂y
ẏ

= x(−y+axy2)+y
(
x− bx2y

)
= −xy+ax2y2+xy−bx2y2 = (a−b)x2y2, [3p]

Therefore as long a < b [1p] the orbital derivative DfV ≤ 0 for all (x, y). For
such values of parameters the function V (x, y) is a valid Lyapunov function
and ensures the stability of the solution of nonlinear equation in the whole
(x, y) plane.
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4. a) Find the general solution of the homogeneous ODE y′′− 4y′ + 13y = 0 (4 points)

Solution: The characteristic equation is λ2 − 4λ+ 13 = (λ− 2)2 + 9 = 0 [1p]
which has two complex-conjugate roots: λ1,2 = 2±3i [1p]. The general solution
to the homogeneous equation is given by yh(x) = (c1 cos 3x+ c2 sin 3x)e2x with
arbitrary constants c1 and c2. [2p].

b) Find the general solution of the non-homogeneous ODE

y′′ − 4y′ + 13y = 18e2x

(8 points)

Solution: Since the functions e2x is not a solution to the homogeneous equation[1p],
we may use the ”educated guess” method and look for the particular solution
of the non-homogeneous equation in the form yp(x) = Ae2x[2p] so that:

y′p = 2Ae2x, y′′p(x) = 4Ae2x

Substituting this back to the nonhomogeneous equation gives in the left-hand
side:

y′′p − 4y′p + 13yp = 4Ae2x − 8Ae2x + 13Ae2x = 9Ae2x [2p]

so that to match to the right-hand side we should choose A = 2 so that yp(x) =
2 e2x[2p]. Finally, the general solution to the non-homogeneous equation is
given by the sum:

yg(x) = (c1 cos 3x+ c2 sin 3x+ 2)e2x, [1p]

c) Find explicit solution to the following initial value problem:

y′ =
y + x

ln (y + x)
− 1 , y(0) = e (5)

(13 points)

Solution. By introducing z(x) = y + x [1p] we see that z′ = y′ + 1 [1p]and
the ODE for z is reduced to the separable form

z′ =
z

ln z
, [2p]
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Separating variables we have∫
ln z

dz

z
=
∫

ln z d(ln z) =
1

2
ln2 z = x+ C , [3p]

and solving for z we get

ln z = ±
√

2(x+ C), ⇒ z = e±
√

2(x+C) , [3p]

which gives for y = z − x the general solution:

y(x) = e±
√

2(x+C) − x, [1p]

To find the solution to IVP (5) we notice: y(0) = e±
√

2C implying the plus sign
and 2C = 1 [1p]. Finally, the solution to IVP is given by

y(x) = e
√

2x+1 − x , [1p]


