MTH5123 Differential Equations Exam 2017: Solution and Marking Scheme

All problems are modifications of problems that have been seen in the lectures and in the exercise classes

1. a) Find the general solution of the homogeneous ordinary differential equation (ODE) $y^{\prime \prime}+2 y^{\prime}-15 y=0$.
[5 marks]
Solution: The characteristic equation is $\lambda^{2}+2 \lambda-15=0$ [1], which has two real roots: $\lambda_{1}=-5$ and $\lambda_{2}=3$ [2]. The general solution of the homogeneous equation is thus given by $y_{h}(x)=c_{1} e^{-5 x}+c_{2} e^{3 x}[2]$.
b) Find the general solution of the inhomogeneous ODE $y^{\prime \prime}+2 y^{\prime}-15 y=-4 e^{x}$.
[11 marks]
Solution: Since the function e^{x} is not a solution of the homogeneous equation [2], we may use the educated guess method and look for a particular solution of the inhomogeneous equation in the form of $y_{p}(x)=d_{0} e^{x}[2]$. Substituting back into the inhomogeneous equation gives on the left-hand side $e^{x} d_{0}(1+2-15)=$ $-12 d_{0} e^{x}$ [2]. To match the right-hand side we have to choose $d_{0}=1 / 3$ so that $y_{p}(x)=e^{x} / 3$ [2]. The general solution of the inhomogeneous equation is given by the sum $y_{g}(x)=y_{h}(x)+y_{p}(x)$ [1] yielding

$$
\begin{equation*}
y_{g}(x)=c_{1} e^{-5 x}+c_{2} e^{3 x}+\frac{1}{3} e^{x} \tag{2}
\end{equation*}
$$

c) Find the general solution of the first order homogeneous linear ODE
$y^{\prime}=\tan (x) y$.
[5 marks]
Solution. The homogeneous ODE $y^{\prime}=\tan (x) y$ is separable [1]. Following the standard procedure we introduce on the left-hand side $H(y)=\int \frac{d y}{y}=\ln |y|[1]$. Solving $H(y)=u$ we find $y= \pm e^{u}=H^{-1}(u)$. On the right-hand side we have (see the formula sheet)

$$
\begin{equation*}
\int \tan x d x=-\ln |\cos x|+C . \tag{1}
\end{equation*}
$$

Hence the general solution of the homogeneous equation is given by

$$
\begin{equation*}
y_{h}(x)=H^{-1}(-\ln |\cos x|+C)= \pm e^{C} \frac{1}{|\cos x|}=D \frac{1}{|\cos x|} \tag{2}
\end{equation*}
$$

where we denoted by $D= \pm e^{C}$ the constant of arbitrary sign.
d) Use the solution in c) to solve the initial value problem for the first order linear inhomogeneous ODE $y^{\prime}=\tan (x) y+\sin x,-\pi / 2<x<\pi / 2, y(0)=1$ by the variation of parameters method.
[4 marks]
Solution. According to the variation of parameters method we look for a solution of the inhomogeneous ODE in the form of

$$
y=\frac{D(x)}{\cos x}
$$

Differentiating yields

$$
\begin{equation*}
y^{\prime}=\frac{D^{\prime}(x)}{\cos x}+D(x) \frac{\sin x}{\cos ^{2} x} \tag{1}
\end{equation*}
$$

Substituting back into the equation $y^{\prime}=\tan x y+\sin x$ we have

$$
\frac{D^{\prime}(x)}{\cos x}+D(x) \frac{\sin x}{\cos ^{2} x}=\frac{D(x)}{\cos x} \tan x+\sin x
$$

which implies

$$
\begin{equation*}
D^{\prime}(x)=\cos x \sin x \quad \Rightarrow \quad D(x)=\frac{1}{2} \sin ^{2} x+C \tag{1}
\end{equation*}
$$

This gives for the general solution of the inhomogeneous ODE

$$
\begin{equation*}
y_{g}(x)=\frac{1}{\cos x}\left(\frac{1}{2} \sin ^{2} x+C\right) \tag{1}
\end{equation*}
$$

As $y(0)=C=1$, we find the solution of the initial value problem

$$
\begin{equation*}
y_{g}(x)=\frac{1}{\cos x}\left(\sin ^{2} x+1\right) \tag{1}
\end{equation*}
$$

2. a) Find all functions $f(y)$ such that the following differential equation becomes exact:

$$
x^{2}+\frac{f(y)}{x}+\ln (x y) \frac{d y}{d x}=0 \quad, \quad x>0, y>0 .
$$

Solution: Denoting $P(x, y)=x^{2}+\frac{f(y)}{x}, Q(x, y)=\ln (x y)$ [2] we have $\frac{\partial P}{\partial y}=$ $\frac{1}{x} \frac{d f(y)}{d y}$, whereas $\frac{\partial Q}{\partial x}=\frac{1}{x}[2]$. Hence the equation is exact only if $\frac{d f(y)}{d y}=1$ or equivalently $f(y)=y+C[1]$ with a real constant C.
b) Solve the equation in (a) in implicit form for a particular choice of $f(y)$ ensuring exactness such that $f(0)=0$.
[11 marks]
Solution: The condition $f(0)=0+C=0$ implies $C=0$ so that $f(y)=y[2]$. Then the general solution should be looked for in implicit form as $F(x, y)=$ Const., where

$$
\begin{equation*}
F=\int P(x, y) d x=\int\left(x^{2}+\frac{y}{x}\right) d x=\frac{x^{3}}{3}+y \ln x+g(y) \tag{3}
\end{equation*}
$$

$g(y)$ is to be determined from the condition $Q=\frac{\partial F}{\partial y}=\ln x+g^{\prime}(y)$ [1]. We conclude that $g^{\prime}(y)=\ln y[1]$ so that (see formula sheet) $g(y)=\int \ln y d y=$ $y \ln |y|-y[2]$. Thus the solution in implicit form is

$$
\begin{equation*}
F(x, y)=\frac{x^{3}}{3}+y \ln x+y \ln y-y=\text { Const. } \tag{2}
\end{equation*}
$$

c) Consider the initial value problem

$$
\frac{d y}{d x}=f(x, y), f(x, y)=\sqrt{25+4 y^{2}}, y(1)=0
$$

Show that the Picard-Lindelöf Theorem guarantees the existence and uniqueness of the solution of the above problem in a rectangular domain $\mathcal{D}=(|x-a| \leq A$, $|y-b| \leq B)$ in the $x y$ plane, and specify the parameters a and b. Find the possible range of values of the height B of the domain \mathcal{D} given that the width A of the domain satisfies $A<1 / 3$.
[9 marks]
Solution: The right-hand side $f(x, y)$ is continuous everywhere, and its derivative $\frac{\partial f}{\partial y}$ satisfies $\left|\frac{\partial f}{\partial y}\right|=4|y| / \sqrt{25+4 y^{2}}<2$ [2], hence is bounded. The initial conditions are $a=1$ and $b=y(1)=0$ [1]. Therefore, in the rectangular domain $\mathcal{D}=(|x-1| \leq A,|y| \leq B)$ the solution of the ODE exists and is unique provided $A<B / M$ with $M=\max _{\mathcal{D}} \sqrt{25+4 y^{2}}$ [1]. The function $f(x, y)=\sqrt{25+4 y^{2}}$ on the right-hand side of the ODE grows with $|y|$. Thus, for a given B its maximum M is achieved for $|y|=B$ [1]. We then have $M=\sqrt{25+4 B^{2}}$ [1], which implies that the width A should satisfy $A<B / M=B / \sqrt{25+4 B^{2}}$ [1]. Requiring that the maximal value of the width $A=B / \sqrt{25+4 B^{2}}$ fulfills $A<1 / 3$ we obtain

$$
\begin{equation*}
B / \sqrt{25+4 B^{2}}<1 / 3 \quad[1] \quad \Rightarrow \quad(3 B)^{2}<25+4 B^{2} \text { and } B<\sqrt{5} \tag{1}
\end{equation*}
$$

Given $A<1 / 3$, for these values of B existence and uniqueness of the solution are guaranteed.
3. Find the solution of the following boundary value problem (BVP) for the second order inhomogeneous ODE

$$
\frac{1}{\cos x} \frac{d^{2} y}{d x^{2}}+\left(\frac{\sin x}{\cos ^{2} x}\right) \frac{d y}{d x}=f(x), y(0)=0, y\left(\frac{\pi}{4}\right)=0
$$

by using the Green's function method along the following lines:
a) Show that the left-hand side of the ODE can be written down in the form $\frac{d}{d x}\left(r(x) \frac{d y}{d x}\right)$ for some function $r(x)$. Use this fact to determine the general solution of the associated homogeneous ODE.
Solution: We have

$$
\frac{d}{d x}\left(r(x) \frac{d y}{d x}\right)=r(x) \frac{d^{2} y}{d x^{2}}+r^{\prime}(x) \frac{d y}{d x}
$$

which coincides with the original ODE for $r(x)=\frac{1}{\cos x}$. Therefore, the homogeneous ODE has the form

$$
\frac{d}{d x}\left(\frac{1}{\cos x} \frac{d y}{d x}\right)=0
$$

This can be integrated to find the general solution

$$
\begin{equation*}
\frac{1}{\cos x} \frac{d y}{d x}=C_{1} \quad \Rightarrow \quad y(x)=C_{1} \sin x+C_{2} \tag{2}
\end{equation*}
$$

for real constants C_{1} and C_{2}.
b) Formulate the left-end and right-end initial value problems corresponding to the above BVP.
[9 marks]
Solution: The left-end boundary condition $y(0)=0$ is imposed at $x_{1}=0$. By comparing it to the standard form $\alpha y^{\prime}\left(x_{1}\right)+\beta y\left(x_{1}\right)=0$ we conclude that $\alpha=0, \beta=1[1]$. Then the left-end initial value problem for the function $y_{L}(x)$ is formulated as

$$
\begin{equation*}
y_{L}\left(x_{1}\right)=\alpha, y_{L}^{\prime}\left(x_{1}\right)=-\beta \quad \Rightarrow \quad y_{L}(0)=0, y_{L}^{\prime}(0)=-1 . \tag{2}
\end{equation*}
$$

Substituting the general solution of the homogeneous equation yields $C_{2}=$ $0, C_{1}=-1[1]$ so that

$$
\begin{equation*}
y_{L}(x)=-\sin x \tag{1}
\end{equation*}
$$

Similarly, $x_{2}=\frac{\pi}{4}$ and by comparing the right-end boundary condition $y\left(\frac{\pi}{4}\right)=$ 0 to the standard form $\gamma y^{\prime}\left(x_{2}\right)+\delta y\left(x_{2}\right)=0$ we conclude that $\gamma=0, \delta=1$ [1]. Then the right-end initial value problem for the function $y_{R}(x)$ is formulated as

$$
\begin{equation*}
y_{R}\left(x_{2}\right)=\gamma, y_{R}^{\prime}\left(x_{2}\right)=-\delta \quad \Rightarrow \quad y_{R}\left(\frac{\pi}{4}\right)=0, y_{R}^{\prime}\left(\frac{\pi}{4}\right)=-1 \tag{2}
\end{equation*}
$$

which gives $\frac{1}{\sqrt{2}} C_{1}+C_{2}=0, C_{1}=-\sqrt{2}$ and thus $C_{2}=1$ so that

$$
y_{R}(x)=-\sqrt{2} \sin x+1
$$

c) Use the solutions of these initial value problems to construct the Green's function $G(x, s)$ of the BVP.
Solution: Using $y_{L}(x), y_{R}(x)$ for the construction of the Green's function $G(x, s)$, first we calculate the Wronskian

$$
\begin{gather*}
W(s)=y_{L}(s) y_{R}^{\prime}(s)-y_{R}(s) y_{L}^{\prime}(s) \\
=-\sin s(-\sqrt{2} \cos s)-(-\sqrt{2} \sin s+1)(-\cos s)=\cos s \tag{1}
\end{gather*}
$$

From the original ODE we have $a_{2}(s)=\frac{1}{\cos s}$ so that $a_{2}(s) W(s)=1$, hence

$$
\begin{gather*}
A(s)=y_{R}(s) /\left(a_{2}(s) W(s)\right)=(-\sqrt{2} \sin s+1) \\
B(s)=y_{L}(s) /\left(a_{2}(s) W(s)\right)=-\sin s . \tag{2}
\end{gather*}
$$

The Green's function is then constructed as

$$
\begin{gather*}
G(x, s)=\left\{\begin{array}{lc}
A(s) y_{L}(x), & 0 \leq x \leq s \\
B(s) y_{R}(x), & s \leq x \leq \pi / 4
\end{array}\right. \\
= \begin{cases}(\sqrt{2} \sin s-1) \sin x, & 0 \leq x \leq s \\
(\sqrt{2} \sin x-1) \sin s, & s \leq x \leq \pi / 4\end{cases} \tag{2}
\end{gather*}
$$

d) Write down the solution of the BVP in terms of $G(x, s)$ and $f(x)$. Use it to find the explicit form of the solution for $f(x)=1$.
Solution: The solution of the boundary value problem is given by

$$
\begin{equation*}
y(x)=\int_{0}^{\pi / 4} G(x, s) f(s) d s=\int_{0}^{x} G(x, s) f(s) d s+\int_{x}^{\pi / 4} G(x, s) f(s) d s \tag{2}
\end{equation*}
$$

Substituting $G(x, s)$ and $f(x)=1$ we obtain

$$
\begin{equation*}
y(x)=\int_{0}^{x}(\sqrt{2} \sin x-1) \sin s d s+\int_{x}^{\frac{\pi}{4}}(\sqrt{2} \sin s-1) \sin x d s . \tag{1}
\end{equation*}
$$

After integration we get

$$
\begin{equation*}
y(x)=\left.(\sqrt{2} \sin x-1)(-\cos s)\right|_{0} ^{x}+\left.\sin x(-\sqrt{2} \cos s-s)\right|_{x} ^{\frac{\pi}{4}} \tag{1}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
y(x)=(1-\cos x)(\sqrt{2} \sin x-1)+\sin x\left(-1-\frac{\pi}{4}+\sqrt{2} \cos x+x\right) \tag{1}
\end{equation*}
$$

Simplification yields

$$
\begin{equation*}
y(x)=\sqrt{2} \sin x-1+\cos x-\sin x\left(1+\frac{\pi}{4}\right)+x \sin x . \tag{2}
\end{equation*}
$$

4. Consider the system of two nonlinear first-order ODEs

$$
\begin{equation*}
\dot{x}=-4 y-x^{3}, \dot{y}=3 x-y^{3} . \tag{1}
\end{equation*}
$$

(a) Write down in matrix form the linear system obtained by linearization of the above equations around the point $x=y=0$. Then find the corresponding eigenvalues and eigenvectors.
[8 marks]
Solution. Discarding the nonlinear terms we see that the matrix associated with the linearized system is given by $A=\left(\begin{array}{cc}0 & -4 \\ 3 & 0\end{array}\right)$. [1] The characteristic equation is $\lambda^{2}+12=0[1]$, which has the two complex conjugate roots $\lambda_{1}=$ $2 i \sqrt{3}, \lambda_{2}=-2 i \sqrt{3}[\mathbf{1}]$. Looking for the eigenvectors in the form $\mathbf{u}=\binom{p}{q}$ we have for the eigenvector corresponding to λ_{1}

$$
\left(\begin{array}{cc}
0 & -4 \tag{2}\\
3 & 0
\end{array}\right)\binom{p}{q}=2 i \sqrt{3}\binom{p}{q} .
$$

This implies $-4 q=2 i \sqrt{3} p$, hence we can choose $p=1$ and $q=-i \frac{\sqrt{3}}{2}[\mathbf{1}]$. For the second eigenvalue we will have components obtained by complex conjugation of the above. The two eigenvectors are thus

$$
\begin{equation*}
\mathbf{u}_{1}=\binom{1}{-i \frac{\sqrt{3}}{2}} \quad, \quad \mathbf{u}_{2}=\binom{1}{i \frac{\sqrt{3}}{2}} . \tag{2}
\end{equation*}
$$

b) Determine the type of fixed point for the linear system. Is it stable? Is it asymptotically stable? Can one judge the stability of the nonlinear system by the linear approximation?
[4 marks]
Solution. We see that the linear system is of center type [1], hence stable [1] but not asymptotically stable [1]. We cannot judge the stability of the zero equilibrium solution for the nonlinear system by its linear counterpart [1].
c) Write down the general solution of the linear system.
[2 marks]
Solution. The general solution of the linear system is given by:

$$
\begin{equation*}
\binom{x(t)}{y(t)}=C_{1} e^{2 i \sqrt{3} t}\binom{1}{-i \frac{\sqrt{3}}{2}}+C_{2} e^{-2 i \sqrt{3} t}\binom{1}{i \frac{\sqrt{3}}{2}} . \tag{2}
\end{equation*}
$$

d) Find the solution of the linear system for the initial conditions $x(0)=2, y(0)=0$ in terms of real-valued functions. What is the shape of the corresponding trajectory in the phase plane?
[6 marks]
Solution. From the general solution we have

$$
\begin{align*}
x(t)=C_{1} e^{2 i \sqrt{3} t}+C_{2} e^{-2 i \sqrt{3} t} & \Rightarrow \quad x(0)=C_{1}+C_{2}=2 \\
y(t)=-i \frac{\sqrt{3}}{2}\left(C_{1} e^{2 i \sqrt{3} t}-C_{2} e^{-2 i \sqrt{3} t}\right) & \Rightarrow \quad y(0)=-i \frac{\sqrt{3}}{2}\left(C_{1}-C_{2}\right)=0 \tag{1}
\end{align*}
$$

which gives $C_{1}=C_{2}=1[1]$. Hence the trajectory is determined by

$$
\begin{gathered}
x(t)=e^{2 i \sqrt{3} t}+e^{-2 i \sqrt{3} t}=2 \cos 2 \sqrt{3} t \\
y(t)=-i \frac{\sqrt{3}}{2}\left(e^{2 i \sqrt{3} t}-e^{-2 i \sqrt{3} t}\right)=\sqrt{3} \sin 2 \sqrt{3} t
\end{gathered}
$$

which has the shape of an ellipse: $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1[1]$.
e) Demonstrate how to use the function $V(x, y)=3 x^{2}+4 y^{2}$ to investigate the stability of the original nonlinear system (1).
Solution. It is $V(x, y)=3 x^{2}+4 y^{2}>0$ for $(x, y) \neq(0,0)[1]$, and the orbital derivative is given by

$$
\begin{align*}
\mathcal{D}_{f} V & =\frac{\partial V}{\partial x} \dot{x}+\frac{\partial V}{\partial y} \dot{y} \\
=6 x\left(-4 y-x^{3}\right)+8 y\left(3 x-y^{3}\right) & =-6 x^{4}-8 y^{4}<0 \forall(x, y) \neq(0,0) . \tag{3}
\end{align*}
$$

Therefore $V(x, y)$ is a valid Lyapunov function ensuring the asymptotic stability of the solution of the nonlinear equation in the whole (x, y) plane [1].

