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MTH5123 Differential Equations
Exam 2017: Solution and Marking Scheme

All problems are modifications of problems that have been seen in the lectures and in the
exercise classes

1. a) Find the general solution of the homogeneous ordinary differential equation (ODE)
y′′ + 2y′ − 15y = 0 . [5 marks]

Solution: The characteristic equation is λ2 + 2λ− 15 = 0 [1], which has two
real roots: λ1 = −5 and λ2 = 3 [2]. The general solution of the homogeneous
equation is thus given by yh(x) = c1e

−5x + c2e
3x [2].

b) Find the general solution of the inhomogeneous ODE y′′ + 2y′ − 15y = −4ex .
[11 marks]

Solution: Since the function ex is not a solution of the homogeneous equation
[2], we may use the educated guess method and look for a particular solution of
the inhomogeneous equation in the form of yp(x) = d0e

x [2]. Substituting back
into the inhomogeneous equation gives on the left-hand side exd0(1 + 2−15) =
−12d0e

x [2]. To match the right-hand side we have to choose d0 = 1/3 so that
yp(x) = ex/3 [2]. The general solution of the inhomogeneous equation is given
by the sum yg(x) = yh(x) + yp(x) [1] yielding

yg(x) = c1e
−5x + c2e

3x +
1

3
ex . [2]

c) Find the general solution of the first order homogeneous linear ODE
y′ = tan (x) y . [5 marks]

Solution. The homogeneous ODE y′ = tan(x)y is separable [1]. Following the
standard procedure we introduce on the left-hand side H(y) =

∫ dy
y

= ln |y| [1].

Solving H(y) = u we find y = ±eu = H−1(u). On the right-hand side we have
(see the formula sheet)∫

tanx dx = − ln | cosx|+ C . [1]

Hence the general solution of the homogeneous equation is given by

yh(x) = H−1 (− ln | cosx|+ C) = ±eC 1

| cosx|
= D

1

| cosx|
, [2]

where we denoted by D = ±eC the constant of arbitrary sign.
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d) Use the solution in c) to solve the initial value problem for the first order linear
inhomogeneous ODE y′ = tan (x) y + sinx , −π/2 < x < π/2 , y(0) = 1 by the
variation of parameters method. [4 marks]

Solution. According to the variation of parameters method we look for a
solution of the inhomogeneous ODE in the form of

y =
D(x)

cosx
.

Differentiating yields

y′ =
D′(x)

cosx
+D(x)

sinx

cos2 x
. [1]

Substituting back into the equation y′ = tanx y + sinx we have

D′(x)

cosx
+D(x)

sinx

cos2 x
=
D(x)

cosx
tanx+ sinx ,

which implies

D′(x) = cos x sinx ⇒ D(x) =
1

2
sin2 x+ C . [1]

This gives for the general solution of the inhomogeneous ODE

yg(x) =
1

cosx

(
1

2
sin2 x+ C

)
. [1]

As y(0) = C = 1, we find the solution of the initial value problem

yg(x) =
1

cosx

(
sin2 x+ 1

)
. [1]

2. a) Find all functions f(y) such that the following differential equation becomes exact:

x2 +
f(y)

x
+ ln (xy)

dy

dx
= 0 , x > 0 , y > 0 . [5 marks]

Solution: Denoting P (x, y) = x2 + f(y)
x
, Q(x, y) = ln (xy) [2] we have ∂P

∂y
=

1
x
df(y)
dy

, whereas ∂Q
∂x

= 1
x

[2]. Hence the equation is exact only if df(y)
dy

= 1 or

equivalently f(y) = y + C [1] with a real constant C.
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b) Solve the equation in (a) in implicit form for a particular choice of f(y) ensuring
exactness such that f(0) = 0. [11 marks]

Solution: The condition f(0) = 0 +C = 0 implies C = 0 so that f(y) = y [2].
Then the general solution should be looked for in implicit form as F (x, y) =
Const., where

F =
∫
P (x, y) dx =

∫ (
x2 +

y

x

)
dx =

x3

3
+ y lnx+ g(y) . [3]

g(y) is to be determined from the condition Q = ∂F
∂y

= ln x + g′(y) [1]. We

conclude that g′(y) = ln y [1] so that (see formula sheet) g(y) =
∫

ln ydy =
y ln |y| − y [2]. Thus the solution in implicit form is

F (x, y) =
x3

3
+ y lnx+ y ln y − y = Const. . [2]

c) Consider the initial value problem

dy

dx
= f(x, y) , f(x, y) =

√
25 + 4y2 , y(1) = 0 .

Show that the Picard-Lindelöf Theorem guarantees the existence and uniqueness
of the solution of the above problem in a rectangular domain D = (|x− a| ≤ A ,
|y − b| ≤ B) in the xy plane, and specify the parameters a and b. Find the possible
range of values of the height B of the domain D given that the width A of the
domain satisfies A < 1/3. [9 marks]

Solution: The right-hand side f(x, y) is continuous everywhere, and its deriva-

tive ∂f
∂y

satisfies
∣∣∣∂f
∂y

∣∣∣ = 4|y|/
√

25 + 4y2 < 2 [2], hence is bounded. The initial

conditions are a = 1 and b = y(1) = 0 [1]. Therefore, in the rectangu-
lar domain D = (|x− 1| ≤ A, |y| ≤ B) the solution of the ODE exists and
is unique provided A < B/M with M = maxD

√
25 + 4y2 [1]. The func-

tion f(x, y) =
√

25 + 4y2 on the right-hand side of the ODE grows with |y|.
Thus, for a given B its maximum M is achieved for |y| = B [1]. We then
have M =

√
25 + 4B2 [1], which implies that the width A should satisfy

A < B/M = B/
√

25 + 4B2 [1]. Requiring that the maximal value of the
width A = B/

√
25 + 4B2 fulfills A < 1/3 we obtain

B/
√

25 + 4B2 < 1/3 [1] ⇒ (3B)2 < 25 + 4B2 and B <
√

5 [1] .

Given A < 1/3, for these values of B existence and uniqueness of the solution
are guaranteed.
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3. Find the solution of the following boundary value problem (BVP) for the second order
inhomogeneous ODE

1

cosx

d2y

dx2
+
(

sinx

cos2 x

)
dy

dx
= f(x) , y(0) = 0 , y

(
π

4

)
= 0

by using the Green’s function method along the following lines:

a) Show that the left-hand side of the ODE can be written down in the form d
dx

(
r(x) dy

dx

)
for some function r(x). Use this fact to determine the general solution of the as-
sociated homogeneous ODE. [4 marks]

Solution: We have

d

dx

(
r(x)

dy

dx

)
= r(x)

d2y

dx2
+ r′(x)

dy

dx
,

which coincides with the original ODE for r(x) = 1
cosx

. Therefore, the homo-
geneous ODE has the form

d

dx

(
1

cosx

dy

dx

)
= 0 [2] .

This can be integrated to find the general solution

1

cosx

dy

dx
= C1 ⇒ y(x) = C1 sinx+ C2 [2]

for real constants C1 and C2.

b) Formulate the left-end and right-end initial value problems corresponding to the
above BVP. [9 marks]

Solution: The left-end boundary condition y(0) = 0 is imposed at x1 = 0.
By comparing it to the standard form αy′(x1) + βy(x1) = 0 we conclude that
α = 0, β = 1 [1]. Then the left-end initial value problem for the function yL(x)
is formulated as

yL(x1) = α , y′L(x1) = −β ⇒ yL(0) = 0 , y′L(0) = −1 . [2]

Substituting the general solution of the homogeneous equation yields C2 =
0, C1 = −1 [1] so that

yL(x) = − sinx . [1]
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Similarly, x2 = π
4

and by comparing the right-end boundary condition y
(
π
4

)
=

0 to the standard form γy′(x2) + δy(x2) = 0 we conclude that γ = 0, δ = 1 [1].
Then the right-end initial value problem for the function yR(x) is formulated
as

yR(x2) = γ , y′R(x2) = −δ ⇒ yR

(
π

4

)
= 0 , y′R

(
π

4

)
= −1 , [2]

which gives 1√
2
C1 + C2 = 0, C1 = −

√
2 and thus C2 = 1 so that

yR(x) = −
√

2 sinx+ 1 . [1]

c) Use the solutions of these initial value problems to construct the Green’s function
G(x, s) of the BVP. [5 marks]

Solution: Using yL(x), yR(x) for the construction of the Green’s function
G(x, s), first we calculate the Wronskian

W (s) = yL(s)y′R(s)− yR(s)y′L(s)

= − sin s(−
√

2 cos s)− (−
√

2 sin s+ 1)(− cos s) = cos s . [1]

From the original ODE we have a2(s) = 1
cos s

so that a2(s)W (s) = 1, hence

A(s) = yR(s)/ (a2(s)W (s)) = (−
√

2 sin s+ 1),

B(s) = yL(s)/ (a2(s)W (s)) = − sin s . [2]

The Green’s function is then constructed as

G(x, s) =

{
A(s)yL(x) , 0 ≤ x ≤ s
B(s)yR(x) , s ≤ x ≤ π/4

=

{
(
√

2 sin s− 1) sinx , 0 ≤ x ≤ s

(
√

2 sinx− 1) sin s , s ≤ x ≤ π/4
. [2]

d) Write down the solution of the BVP in terms of G(x, s) and f(x). Use it to find
the explicit form of the solution for f(x) = 1. [7 marks]

Solution: The solution of the boundary value problem is given by

y(x) =
∫ π/4

0
G(x, s) f(s) ds =

∫ x

0
G(x, s) f(s) ds+

∫ π/4

x
G(x, s) f(s) ds . [2]
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Substituting G(x, s) and f(x) = 1 we obtain

y(x) =
∫ x

0
(
√

2 sinx− 1) sin s ds+
∫ π

4

x
(
√

2 sin s− 1) sinx ds . [1]

After integration we get

y(x) = (
√

2 sinx− 1)(− cos s)|x0 + sinx(−
√

2 cos s− s)|
π
4
x , [1]

which can be written as

y(x) = (1− cosx)(
√

2 sinx− 1) + sin x
(
−1− π

4
+
√

2 cosx+ x
)
. [1]

Simplification yields

y(x) =
√

2 sinx− 1 + cos x− sinx(1 +
π

4
) + x sinx . [2]

4. Consider the system of two nonlinear first-order ODEs

ẋ = −4y − x3 , ẏ = 3x− y3 . (1)

(a) Write down in matrix form the linear system obtained by linearization of the above
equations around the point x = y = 0. Then find the corresponding eigenvalues
and eigenvectors. [8 marks]

Solution. Discarding the nonlinear terms we see that the matrix associated

with the linearized system is given by A =

(
0 −4
3 0

)
. [1] The characteristic

equation is λ2 + 12 = 0 [1], which has the two complex conjugate roots λ1 =

2i
√

3, λ2 = −2i
√

3 [1]. Looking for the eigenvectors in the form u =

(
p
q

)
we

have for the eigenvector corresponding to λ1(
0 −4
3 0

)(
p
q

)
= 2i
√

3

(
p
q

)
. [2]

This implies −4q = 2i
√

3p, hence we can choose p = 1 and q = −i
√

3
2

[1]. For
the second eigenvalue we will have components obtained by complex conjuga-
tion of the above. The two eigenvectors are thus

u1 =

(
1

−i
√

3
2

)
, u2 =

(
1

i
√

3
2

)
. [2]
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b) Determine the type of fixed point for the linear system. Is it stable? Is it asymp-
totically stable? Can one judge the stability of the nonlinear system by the linear
approximation? [4 marks]

Solution. We see that the linear system is of center type [1], hence stable [1]
but not asymptotically stable [1]. We cannot judge the stability of the zero
equilibrium solution for the nonlinear system by its linear counterpart [1].

c) Write down the general solution of the linear system. [2 marks]

Solution. The general solution of the linear system is given by:(
x(t)
y(t)

)
= C1e

2i
√

3t

(
1

−i
√

3
2

)
+ C2e

−2i
√

3t

(
1

i
√

3
2

)
. [2]

d) Find the solution of the linear system for the initial conditions x(0) = 2, y(0) = 0
in terms of real-valued functions. What is the shape of the corresponding trajectory
in the phase plane? [6 marks]

Solution. From the general solution we have

x(t) = C1e
2i
√

3t + C2e
−2i
√

3t ⇒ x(0) = C1 + C2 = 2 [1]

y(t) = −i
√

3

2

(
C1e

2i
√

3t − C2e
−2i
√

3t
)
⇒ y(0) = −i

√
3

2
(C1 − C2) = 0 , [1]

which gives C1 = C2 = 1 [1]. Hence the trajectory is determined by

x(t) = e2i
√

3t + e−2i
√

3t = 2 cos 2
√

3t [1]

y(t) = −i
√

3

2

(
e2i
√

3t − e−2i
√

3t
)

=
√

3 sin 2
√

3t [1] ,

which has the shape of an ellipse: x2

4
+ y2

3
= 1 [1].

e) Demonstrate how to use the function V (x, y) = 3x2 + 4y2 to investigate the
stability of the original nonlinear system (1). [5 marks]

Solution. It is V (x, y) = 3x2 + 4y2 > 0 for (x, y) 6= (0, 0) [1], and the orbital
derivative is given by

DfV =
∂V

∂x
ẋ+

∂V

∂y
ẏ

= 6x(−4y − x3) + 8y
(
3x− y3

)
= −6x4 − 8y4 < 0 ∀ (x, y) 6= (0, 0) . [3]

Therefore V (x, y) is a valid Lyapunov function ensuring the asymptotic stabil-
ity of the solution of the nonlinear equation in the whole (x, y) plane [1].


