Appendix

Useful trigonometric formulae

$$
e^{i \theta}=\cos \theta+i \sin \theta, \quad \cos 2 x=\cos ^{2} x-\sin ^{2} x, \quad \sin 2 x=2 \sin x \cos x
$$

$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B, \quad \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$

Some derivatives

In the table below, some derivatives are listed

$f(x)$	$f^{\prime}(x)$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$1 / \cos ^{2} x$
$\sinh x$	$\cosh x$
$\cosh x$	$\sinh x$
$\tanh x$	$1 / \cosh ^{2} x$
$\log x$	$\frac{1}{x}$

Useful integrals

$$
\begin{gathered}
\int x^{a} d x=\frac{1}{a+1} x^{a+1}, \quad \forall a \neq-1 ; \quad \text { and } \quad \int \frac{1}{x} d x=\ln |x| \quad \text { for } a=-1 \\
\int \cos x d x=\sin x, \quad \int \sin x d x=-\cos x \\
\int e^{a x} \cos b x d x=\frac{e^{a x}}{a^{2}+b^{2}}(a \cos b x+b \sin b x), \quad \int e^{a x} \sin b x d x=\frac{e^{a x}}{a^{2}+b^{2}}(a \sin b x-b \cos b x) \\
\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \arctan \frac{x}{a}, \quad \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\arcsin \frac{x}{a} \\
\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \frac{|x-a|}{|x+a|},
\end{gathered}
$$

Exact first-order ODEs

If the equation

$$
P(x, y)+Q(x, y) \frac{d y}{d x}=0
$$

is exact, its solution can be found in the form $F(x, y)=$ Const. where

$$
P=\frac{\partial F}{\partial x} \quad \text { and } \quad Q=\frac{\partial F}{\partial y}
$$

Reducible to separable ODEs:

$$
\begin{aligned}
y^{\prime}=f(a x+b y+c) & \Rightarrow z=a x+b y+c \\
y^{\prime}=f\left(\frac{y}{x}\right) & \Rightarrow y=x z
\end{aligned}
$$

Variation of parameter method for first-order ODEs

Given the inhomogeneous ODE

$$
y^{\prime}=A(x) y+B(x)
$$

It starts with finding the general solution $y_{h}(x)$ of the corresponding homogeneous equation $y^{\prime}=A(x) y$, and proceeds by determining the particular solution $y_{p}(x)$ given by

$$
y_{p}(x)=e^{\int A(x) d x} \int B(x) e^{-\int A(x) d x} d x
$$

Variation of parameter method for second-order ODEs with constant coefficients

Given the inhomogeneous ODE

$$
a y^{\prime \prime}+b y^{\prime}+c=f(x)
$$

with $\lambda_{1} \neq \lambda_{2}$ roots of the characteristic equation of the corresponding homogeneous ODE, a particular solution $y_{p}(x)$ is given by

$$
y_{p}(x)=\frac{1}{a_{2}\left(\lambda_{1}-\lambda_{2}\right)}\left\{e^{\lambda_{1} x} \int f(x) e^{-\lambda_{1} x} d x-e^{\lambda_{2} x} \int f(x) e^{-\lambda_{2} x} d x\right\}
$$

Euler ODEs

Second order linear ODE of the type

$$
a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0
$$

Solved by putting $x=e^{t}$ and deriving the equations for $z=y(x(t))$.

Picard-Lindelöf Theorem.

Let \mathcal{D} be the rectangular domain in the $x y$ plane defined as $\mathcal{D}=(|x-a| \leq A,|y-b| \leq B)$ and suppose $f(x, y)$ is a function defined on \mathcal{D} which satisfies the following conditions:
(i) $f(x, y)$ is continuous and therefore bounded in \mathcal{D}
(ii) the parameters A and B satisfy $A \leq B / M$ where $M=\max _{\mathcal{D}}|f(x, y)|$
(iii) $\left|\frac{\partial f}{\partial y}\right|$ is bounded in \mathcal{D}.

Then there exists a unique solution on \mathcal{D} to the initial value problem

$$
\frac{d y}{d x}=f(x, y), \quad y(a)=b
$$

Educated guess method:

The educated guess method is a method to find a particular solution of inhomogeneous ODEs of the type

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(x)
$$

Under the conditions in which the method can be applied, for $f(x)=p(x) e^{\alpha x}, \mathrm{a}$ particular solution exists of the form

$$
y_{p}(x)=Q(x) e^{\alpha x}
$$

for $f(x)=p(x) \cos (\alpha x)$ or $f(x)=p(x) \sin (\alpha x)$, a particular solution exists of the form

$$
y_{p}(x)=Q(x)[A \cos (\alpha x)+B \sin (\alpha x)]
$$

, where $p(x)$ and $Q(x)$ are polynomials of the same degree.

End of Appendix.

