
MTH5123 Differential Equations
Formative Assessment: Week 11 – Solutions G. Bianconi

I. Practice Problems

A. Find all fixed points of the system ẏ1 = f1(y1, y2) , ẏ2 = f2(y1, y2) with

f1(y1, y2) = 2y1 + y22 − 1 , f2(y1, y2) = 6y1 − y22 + 1 .

Investigate the linear stability of the corresponding system linearized around each fixed point.
Describe the type of fixed point and explain in words the shape of the trajectories close to it.

Solution: To find all fixed points we solve the system

f1(y1, y2) = 0 , f2(y1, y2) = 0 .

From the first equation we obtain y1 = (1 − y22)/2. Substituting this into the second
equation gives

6y1 − y22 + 1 = 3(1− y22)− y22 + 1 = 4(1− y22) = 0 ,

which yields y = ±1 and x = 0. Therefore there exists two fixed points in the (y1, y2)−plane,
(0, 1) and (0,−1). Linearization around any equilibrium (x∗, y∗) is based on the matrix

A =

(
∂f1
∂y1
|(y1=y∗1 ,y2=y∗2)

∂f1
∂y2
|(y1=y∗1 ,y2=y∗2)

∂f2
∂y1
|(y1=y∗1 ,y2=y∗2)

∂f2
∂y2
|(y1=y∗1 ,y2=y∗2)

)
=

(
2 2y∗2
6 −2y∗2

)
.

For the first fixed point (0, 1), we have y∗1 = 0, y∗2 = 1 yielding A =

(
2 2
6 −2

)
. The

characteristic equation is given by (2− λ)(−2− λ)− 12 = λ2 − 16 = 0. The eigenvalues
are real and of different sign, λ1 = 4 and λ2 = −4 showing that the equilibrium is a
saddle, and trajectories close to it are hyperbolas. Using the corresponding eigenvectors

u1 =

(
1
1

)
and u2 =

(
1
−3

)
, you can plot the invariant manifolds and the phase

portrait in the original coordinates as in Figure 1.
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Figure 1: The phase portrait for problem A featuring a saddle at the equilibrium (0, 1).
Note we plot the phase portrait by setting up the original at the equilibrium point.

For the second fixed point (0,−1), we have y∗1 = 0, y∗2 = −1 yielding A =

(
2 −2
6 2

)
.

The characteristic equation is given by (2−λ)2− 12 = λ2− 4λ+ 16 = 0. The eigenvalues
are complex conjugate with positive real part, λ = 2± i

√
12 showing that the equilibrium

is an unstable focus, and trajectories close to it are spiralling away from it. Note there
are no invariant manifolds because the eigenvalues are complex numbers, and the corre-
sponding phase portrait in the original coordinates are sketched in Figure 2.
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Figure 2: The phase portrait for problem A featuring an unstable focus at the equilibrium
(0,−1). Note we plot the phase portrait by setting up the original at the equilibrium point
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B. Find the values of the real parameter a for which the system

ẏ1 = y2 + ay1 − y51 , ẏ2 = −y1 − y52

has a stable fixed point at y1 = y2 = 0. Use the function V (y1, y2) = y21 + y22 for judging the
stability of the nonlinear system when linear stability analysis is insufficient.

Solution The linearized system takes the form ẏ1 = y2+ay1, ẏ2 = −y1. The corresponding

matrix is given by A =

(
a 1
−1 0

)
, and the characteristic equation is (a− λ)(−λ) + 1 =

λ2 − aλ+ 1 = 0 with the two roots

λ1 =
a+
√
a2 − 4

2
, λ2 =

a−
√
a2 − 4

2
.

We need to consider three different cases:

(i) a2 < 4 or equivalently −2 < a < 2: The two roots are complex conjugate,

λ1 =
a+ i

√
4− a2

2
, λ2 =

a− i
√

4− a2
2

.

We have Reλ = a
2
, which is negative for −2 < a < 0 when the corresponding system

is asymptotically stable and positive for 0 < a < 2 when the system is unstable. For
a = 0 the real part vanishes so that the fixed point is a center, hence stable linearly. But
according to our theorem we cannot judge by linear analysis about the properties of the
nonlinear system. Using the suggested function V (y1, y2) in the case of a = 0 we obtain
for its orbital derivative

DfV =
∂V

∂y1
ẏ1 +

∂V

∂y2
ẏ2 = 2y1(y2−y51) + 2y

(
−y1 − y52

)
= −2y61−2y62 < 0∀ (y1, y2) 6= (0, 0).

According to the Lyapunov stability theorem we can thus conclude that the system is
also (asymptotically) stable for a = 0.

(ii) a ≥ 2: The two roots are real and λ1 = a+
√
a2−4
2

> 0, so the system is unstable.

(iii) a ≤ −2: Here the two real roots are both negative,

λ1 =
−|a|+

√
|a|2 − 4

2
< 0, λ2 =

−|a| −
√
|a|2 − 4

2
< 0,

and the linear system is asymptotically stable. Hence the zero solution for the nonlinear
system is stable as well.

C. Study the stability properties of the solution y1(t) = 0 of the second order differential
equation

ÿ1 + (a− 1)ẏ1 + (4− a2)y1 = 0

for the values a = 1, a = 2 and a = −2 of the real parameter a by converting the ODE to a
system of two first-order equations.
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Solution. Introducing ẏ1 = y2 as the first equation we have ẏ2 = ÿ1. Then one can
rewrite the second-order ODE as

ÿ1 = −(a− 1)ẏ1 − (4− a2)y1 ⇒ ẏ2 = −(a− 1)y2 − (4− a2)y1 ,

which together with ẏ1 = y2 yields a system of two first-order linear equations.

We see that the corresponding matrix is given by A =

(
0 1

−(4− a2) −(a− 1)

)
. The

characteristic equation is (−λ)(−(a− 1)− λ) + 4− a2 = λ2 + (a− 1)λ+ 4− a2 = 0 with
the two roots

λ1 =
1− a+

√
5a2 − 2a− 15

2
, λ2 =

1− a−
√

5a2 − 2a− 15

2
.

We now consider the three different cases above:

(i) If a = 1 we have two complex conjugate roots λ1 = i
√

3, λ2 = −i
√

3 . As the real part
is vanishing the linear system has a centre. Although the zero solution of the system is
stable, it is not asymptotically stable.

(ii) If a = 2 we have two real roots λ1 = 0, λ2 = −1 < 0, hence the zero solution is again
stable but not asymptotically stable.

(iii) If a = −2 we have two real roots λ1 = 0, λ2 = 3 > 0, hence the zero solution is
unstable.

D. Analyze the nature and stability of the critical point (0, 0) as a function of the parameters
L, R and C for the dynamical system arising from the equation

L
d2I

dt2
+R

dI

dt
+

1

C
I = 0.

Solution. In Coursework 5 week 10, we rewrite the equation above as a system of two
first-order differential equations for y1 = I and y2 = dI/dt and show that y1 = 0, y2 = 0
is a critical point of the system. For the stability analysis, we find

R2 > 4L/C ⇒ node, asymptotically stable

R2 < 4L/C ⇒ spiral point, asymptotically stable

Note: when R2 = 4L/C, there are equal eigenvalues, not investigated in detail in our
lectures. In this case, we call the critical point an improper node (which, in this case, is
asymptotically stable).
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