
MTH5123 Differential Equations
Formative Assessment: Week 10 – Solutions G. Bianconi

I. Practice Problems-Solution of selected questions

A. Determine the type of equilibrium at y1 = 0, y2 = 0 for the following ODE systems.

A remind of Coursework 8 and the solutions
1) ẏ1 = −1

2
y1 + 5

2
y2 , ẏ2 = 5

2
y1 − 1

2
y2, y1(0) = a, y2(0) = b. The solution to this I.V.P.

is given by y1 = 1
2
(a+ b)e2t + 1

2
(a− b)e−3t , y2 = 1

2
(a+ b)e2t − 1

2
(a− b)e−3t .

2) ẏ1 = −y1 + 5y2 , ẏ2 = −y1 + y2 , y1(0) = 0 , y2(0) = 4 . The solution to this I.V.P.
is given by y1 = 10 sin 2t , y2 = 2 sin 2t+ 4 cos 2t.

Solutions:
(1) The fixed point is a saddle, becaues we have the two real eigenvalues, one
positive and one negative for this linear ODE systems.

(Revision of Sketching phase portraits: Choosing the initial conditions such that a = b
we have y1 = y2 = ae2t for any t, and this line defines one of the invariant manifolds.
Along this line the motion is away from the origin towards ±∞ for t→∞ (for a > 0 and
a < 0, respectively). The second invariant manifold y2 = −y1 corresponds to the initial
conditions b = −a. Along this line the motion is towards the origin, i.e., for t → ∞ we
have y2 = −y1 → 0. For initial conditions away from the two invariant manifolds we have
asymptotically y2 ≈ y1 ≈ 1

2
(a + b)e2t for t → ∞. This means the typical trajectories are

hyperbolic-like curves whose tangent is parallel asymptotically to the y2 = y1 direction
for t→∞ and is parallel to the y2 = −y1 direction for t→ −∞; see the figure to the end
(left).)

(2)The fixed point is a centre, because the eigenvalues are two complex num-
bers with the real part (or TrA) equals to 0.

In addition, according to the solution to this IVP, the trajectories must be ellipses; see
the figure below for the particular trajectory passing through the given initial conditions.
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Figure 1: Left: The phase portrait for problem A1) featuring a saddle. Right: The
trajectory solving the initial value problem A2). The equilibrium at (0,0) is a center.

B. Determine the general solution, sketch the phase portraits and determine the type of
equilibrium at y1 = 0, y2 = 0 for the following systems of linear differential equations:

1) ẏ1 = −y1 + 6y2 , ẏ2 = −3y1 + 8y2
Solution: First we rewrite the system in the matrix form ẏ = Au, where A =(
−1 6
−3 8

)
. Next we obtain the characteristic equation and determine the eigen-

values:
(−1− λ)(8− λ) + 18 = λ2 − 7λ+ 10 = 0 , λ1 = 5, λ2 = 2 .

Thus, the equilibrium at (0, 0) is an unstable node source, because both
eigenvalues are positive. Then we determine the eigenvector components for
λ1 = 5: (

−1 6
−3 8

)(
p1
q1

)
= 5

(
p1
q1

)
⇒ −p1 + 6q1 = 5p1
−3p1 + 8q1 = 5q1

,

which gives p1 = q1 so that the corresponding eigenvector can be chosen to u1 =(
1
1

)
. Similarly, we find that the eigenvector corresponding to λ1 = 2 is given by

u2 =

(
1

1/2

)
. Finally, the general solution to the system of ODEs is given by(

y1
y2

)
= C1e

5t

(
1
1

)
+ C2e

2t

(
1

1/2

)
or in components

y1(t) = C1e
5t + C2e

2t , y2(t) = C1e
5t +

1

2
C2e

2t .
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Figure 2: The phase portrait for problem B1) featuring an unstable node source.

2) ẏ1 = −y1 + y2 , ẏ2 = y1 − y2
Solution: We rewrite the system in the matrix form ẋ = Au withA =

(
−1 1
1 −1

)
.

The characteristic equation is (−1−λ)(−1−λ)−1 = λ2+2λ = 0, λ1 = 0, λ2 = −2.
Thus, the equilibrium at (0, 0) is stable, as one eigenvalue is negative and

the other is zero. The corresponding eigenvector can be chosen as u1 =

(
1
1

)
and u2 =

(
1
−1

)
. Finally, the general solution to the system of ODEs is given by

(
y1
y2

)
= C1

(
1
1

)
+ C2e

−2t

(
1
−1

)
or in components

y1(t) = C1 + C2e
−2t , y2(t) = C1 − C2e

2t .

Note: In the above system, we have two real eigenvalues and one eigenvalue is zero.

All points on the line of the eigenvector u1 =

(
1
1

)
obtained under λ = 0 are all

equilibrium points. You can check this by the ODE, when y2 = y1 both ẏ1 = 0 and
ẏ2 = 0. The equilibrium at (0, 0) is stable (see the phase portraits below) but not a
stable node sink.
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Figure 3: The phase portrait for problem B2) featuring a stable equilibrium.

3) ẏ1 = −4y1 − 8y2 , ẏ2 = 4y1 + 4y2

Solution: We rewrite the system in the matrix form ẏ = Au withA =

(
−4 −8
4 4

)
.

The characteristic equation is (−4− λ)(4− λ) + 32 = λ2 + 16 = 0 which yields two
complex-conjugate eigenvalues λ1 = 4i, λ2 = −4i. we can know that the equi-
librium at (0, 0) is a center, because the two eigenvalues are complex and
their real parts both equal to zero. The eigenvector components for λ1 = 4i
are obtained by(

−4 −8
4 4

)(
p1
q1

)
= 4i

(
p1
q1

)
⇒ −4p1 − 8q1 = 4ip1

4p1 + 4q1 = 4iq1
.

This gives q1 = −1+i
2
p1 so that the corresponding eigenvector can be chosen, for

example, as u1 =

(
2

−1− i

)
. We can immediately conclude that the eigenvector

corresponding to λ2 = −4i can be chosen in the complex conjugate form u2 =(
2

−1 + i

)
. Finally, the general solution to the system of ODEs can be written in

the form (
y1
y2

)
= C1e

4it

(
2

−1− i

)
+ C2e

−4it

(
2

−1 + i

)
or in components

y1(t) = 2C1e
4it + 2C2e

−4it , y2(t) = (−1− i)C1e
4it + (−1 + i)C2e

−4it .

For the initial conditions y1(0) = a and y2(0) = b, where (a, b) can be any point in
the phase plane

y1(0) = C1 + C2 = a/2 , y2(0) = −1(C1 + C2) + (C2 − C1)i = b

⇒ C1 =
a

4
+

2b+ a

4
i, C2 =

a

4
− 2b+ a

4
i,
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Thus the solution to this IVP will be

y1(t) = 2(
a

4
+

2b+ a

4
i)e4it + 2(

a

4
− 2b+ a

4
i)e−4it = a cos 4t − (2b+ a) sin 4t,

y2(t) = (−1−i)(a
4

+
2b+ a

4
i)e4it+(−1+i)(

a

4
− 2b+ a

4
i)e−4it = (b+a) sin 4t+b cos 4t.

As the phase portrait is a centre. If we plot one ellipse (one trajectory), then all
other trajectories are just a set of nested ellipses around the equilibrium point in
this linear system (0, 0). Thus, pick any values for (a, b), e.g. (1, 0), the solution to
this IVP becomes

y1(t) = cos 4t − sin 4t,

y2(t) = sin 4t.

You can plot the ellipse by chose t=0, π
16
, 2π
16
, 4π
16
, 5π
16
, 6π
16
..., which is the black ellipse

in the Figure 4. Then you draw rest trajectories accordingly.
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Figure 4: The phase portrait for problem B3) featuring a center.

If you transform the y1y2 coordinates to new coordinates as described in our lecture, the
trajectories will becomes counterclockwise circles around (0, 0).

C. Determine the type of fixed point for the dynamical systems

ẏ1 = 4y2 , ẏ2 = −y1.

Then determine the solutions of the corresponding initial value problems for the general initial
conditions y1(0) = a, y2(0) = b. Finally sketch the phase portraits in the (y1, y2) phase plane.

Solution. The matrix associated with this system is given by A =

(
0 4
−1 0

)
. The

characteristic equation is λ2 + 4 = 0 with two complex conjugate roots λ1 = 2i, λ2 = −2i.
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As the eigenvalues are complex conjugate and their real parts equal to zero,
the corresponding fixed point is a center.

The eigenvector corresponding to λ1 = 2i can be found from(
0 4
−1 0

)(
p1
q1

)
= 2i

(
p1
q1

)
, ⇒ q1 =

i

2
p1

so that the eigenvectors are u1 =

(
1
i
2

)
and u2 =

(
1
− i

2

)
. The general solution has

the form (
y1
y2

)
= C1e

2it

(
1
i
2

)
+ C2e

−2it

(
1
− i

2

)
.

The initial conditions yield

y1(0) = C1 + C2 = a , y2(0) =
i

2
(C1 − C2) = b ⇒ C1 =

1

2
(a− 2ib), C2 =

1

2
(a+ 2ib)y2 =

so that the solution to the general initial value problem is given by

y1 =
1

2
(a− 2ib)e2it +

1

2
(a+ 2ib)e−2it = a cos 2t+ 2b sin 2t,

and similarly

y2 =
i

4
(a− 2ib)e2it − i

4
(a+ 2ib)e−2it = −a

2
sin 2t+ b cos 2t .

We notice that y21 + 4y22 = a2 + 4b2 describing ellipses in phase space. The check the
direction of the trajectories (arrows), we can pick up any initial point, for example,

y1(0) = 1, y2(0) = 0, then the tangent vector at this point is

(
ẏ1(0)
ẏ2(0)

)
= A

(
y1(0)
y2(0)

)
=(

0 4
−1 0

)(
1
0

)
=

(
0
−1

)
. Thus the trajectory starting at (1, 0) will move towards

negative y values (clockwise).
Note the trajectories here are clockwise as it is in the original y1y2 coordi-

nates. If you transform the y1y2 coordinates to new coordinates as described
in our lecture, the trajectories will becomes counterclockwise circles around
(0, 0).

Figure 5: Phase portrait for problem C featuring a centre.
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II. Homework

A. Determine the solution of the initial value problem

ẏ1 = y1 − 4y2 , ẏ2 = 4y1 + y2 , y1(0) = 0 , y2(0) = 1 , t ≥ 0

and the type of fixed point. Then sketch the trajectory in the (y1, y2) phase plane correspond-
ing to the chosen initial values in the specified range of t.

Solution. The matrix associated with the system is given by A =

(
1 −4
4 1

)
. The

characteristic equation is λ2− 2λ+ 17 = 0 with two complex conjugate roots λ1 = 1 + 4i,
λ2 = 1− 4i. The eigenvector corresponding to λ1 = 1 + 4i can be found from(

1 −4
4 1

)(
p1
q1

)
= (1 + 4i)

(
p1
q1

)
⇒ q1 = −ip1

so that the eigenvectors are u1 =

(
1
−i

)
and u2 =

(
1
i

)
. The general solution has the

form (
y1
y2

)
= C1e

t+4it

(
1
−i

)
+ C2e

t−4it

(
1
i

)
.

The initial conditions yield

y1(0) = C1 + C2 = 0 , y2(0) = C1(−i) + C2 i = 1 , ⇒ C1 =
i

2
, C2 =

−i
2

so that the solution to the general initial value problem is given by

y1 =
i

2
et+4it − i

2
et−4it = −et sin 4t

and similarly

y2 =
i

2
(−i)et+4it − i

2
iet−4it = et cos 4t .

The fixed point is an unstable focus and trajectories are spiraling away from the origin
for t→∞. For the specified initial conditions the initial tangent vector to the trajectory
is ẏ1(0) = −4, ẏ2(0) = 1 so that the rotation goes anticlockwise; see the sketch below.

III. Applications involving Dynamical Systems

A. Using the relation between charge and current given by I = dQ/dt, rewrite the following

L
dI

dt
+RI +

1

C
Q = E(t)

as a second order equation in the charge Q. Use this to obtain an ODE for the current I as

L
d2I

dt2
+R

dI

dt
+

1

C
I = Ė(t).
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Figure 6: The trajectory solving this initial value problem) with an unstable focus.

Solution. Let differentiation with respect to t be denoted by a dot (Newton’s notation
for independent variable as time t). Then we have I = Q̇ and consequently, İ = Q̈. The
given equation can be rewritten in terms of Q as

E(t) = L
dI

dt
+RI +

1

C
Q = Lİ +RI +

1

C
Q = LQ̈+RQ̇+

1

C
Q,

which is a second-order equation in Q.
We can either differentiating this 2nd-order ODE or the original 1st-order ODE over

t, and using the fact that Q̇ = I, we obtain

L
...
Q +RQ̈+

1

C
Q̇ = LÏ +Rİ +

1

C
I = Ė(t),

which is a second order equation in I.
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B. Assuming the system is closed and Ė(t) = 0, write the second order equation in I as a
system of two first order equations using y1 = I and y = dI/dt. Show that y1 = 0, y2 = 0 is
a critical point.

Solution. Given Ė(t) = 0, we have LÏ+Rİ+ 1
C
I = 0. Following the suggested definitions

for x and y,

y1 = I ⇒ ẏ1 = İ = y

y2 = İ ⇒ ẏ2 = Ï =
1

L

(
−Rİ − 1

C
I

)
=

1

L

(
−Ry − 1

C
x

)
.

Rewriting the equation as a linear system, we find(
ẏ1
ẏ2

)
=

(
0 1
− 1
LC
−R
L

)(
y1
y2

)
.

We immediately see that (x, y) = (0, 0) is a critical point of the system since both the left
and right hand sides vanish for this solution.
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