I. Practice Problems-Solution of selected questions

A. Determine the type of equilibrium at $y_{1}=0, y_{2}=0$ for the following ODE systems.

A remind of Coursework 8 and the solutions

1) $\dot{y_{1}}=-\frac{1}{2} y_{1}+\frac{5}{2} y_{2}, \dot{y_{2}}=\frac{5}{2} y_{1}-\frac{1}{2} y_{2}, y_{1}(0)=a, y_{2}(0)=b$. The solution to this I.V.P. is given by $y_{1}=\frac{1}{2}(a+b) e^{2 t}+\frac{1}{2}(a-b) e^{-3 t}, y_{2}=\frac{1}{2}(a+b) e^{2 t}-\frac{1}{2}(a-b) e^{-3 t}$.
2) $\dot{y_{1}}=-y_{1}+5 y_{2}, \dot{y_{2}}=-y_{1}+y_{2}, \quad y_{1}(0)=0, y_{2}(0)=4$. The solution to this I.V.P. is given by $y_{1}=10 \sin 2 t, y_{2}=2 \sin 2 t+4 \cos 2 t$.

Solutions:

(1) The fixed point is a saddle, becaues we have the two real eigenvalues, one positive and one negative for this linear ODE systems.
(Revision of Sketching phase portraits: Choosing the initial conditions such that $a=b$ we have $y_{1}=y_{2}=a e^{2 t}$ for any t, and this line defines one of the invariant manifolds. Along this line the motion is away from the origin towards $\pm \infty$ for $t \rightarrow \infty$ (for $a>0$ and $a<0$, respectively). The second invariant manifold $y_{2}=-y_{1}$ corresponds to the initial conditions $b=-a$. Along this line the motion is towards the origin, i.e., for $t \rightarrow \infty$ we have $y_{2}=-y_{1} \rightarrow 0$. For initial conditions away from the two invariant manifolds we have asymptotically $y_{2} \approx y_{1} \approx \frac{1}{2}(a+b) e^{2 t}$ for $t \rightarrow \infty$. This means the typical trajectories are hyperbolic-like curves whose tangent is parallel asymptotically to the $y_{2}=y_{1}$ direction for $t \rightarrow \infty$ and is parallel to the $y_{2}=-y_{1}$ direction for $t \rightarrow-\infty$; see the figure to the end (left).)
(2)The fixed point is a centre, because the eigenvalues are two complex numbers with the real part (or $\operatorname{Tr} A$) equals to 0 .

In addition, according to the solution to this IVP, the trajectories must be ellipses; see the figure below for the particular trajectory passing through the given initial conditions.

Figure 1: Left: The phase portrait for problem A1) featuring a saddle. Right: The trajectory solving the initial value problem A2). The equilibrium at $(0,0)$ is a center.
B. Determine the general solution, sketch the phase portraits and determine the type of equilibrium at $y_{1}=0, y_{2}=0$ for the following systems of linear differential equations:

1) $\dot{y_{1}}=-y_{1}+6 y_{2}, \dot{y_{2}}=-3 y_{1}+8 y_{2}$

Solution: First we rewrite the system in the matrix form $\dot{\mathbf{y}}=A \mathbf{u}$, where $A=$ $\left(\begin{array}{ll}-1 & 6 \\ -3 & 8\end{array}\right)$. Next we obtain the characteristic equation and determine the eigenvalues:

$$
(-1-\lambda)(8-\lambda)+18=\lambda^{2}-7 \lambda+10=0, \lambda_{1}=5, \lambda_{2}=2
$$

Thus, the equilibrium at $(0,0)$ is an unstable node source, because both eigenvalues are positive. Then we determine the eigenvector components for $\lambda_{1}=5$:

$$
\left(\begin{array}{cc}
-1 & 6 \\
-3 & 8
\end{array}\right)\binom{p_{1}}{q_{1}}=5\binom{p_{1}}{q_{1}} \Rightarrow \begin{gathered}
-p_{1}+6 q_{1}=5 p_{1} \\
-3 p_{1}+8 q_{1}=5 q_{1}
\end{gathered}
$$

which gives $p_{1}=q_{1}$ so that the corresponding eigenvector can be chosen to $\mathbf{u}_{1}=$ $\binom{1}{1}$. Similarly, we find that the eigenvector corresponding to $\lambda_{1}=2$ is given by $\mathbf{u}_{2}=\binom{1}{1 / 2}$. Finally, the general solution to the system of ODEs is given by

$$
\binom{y_{1}}{y_{2}}=C_{1} e^{5 t}\binom{1}{1}+C_{2} e^{2 t}\binom{1}{1 / 2}
$$

or in components

$$
y_{1}(t)=C_{1} e^{5 t}+C_{2} e^{2 t}, y_{2}(t)=C_{1} e^{5 t}+\frac{1}{2} C_{2} e^{2 t}
$$

Figure 2: The phase portrait for problem B1) featuring an unstable node source.
2) $\dot{y_{1}}=-y_{1}+y_{2}, \dot{y_{2}}=y_{1}-y_{2}$

Solution: We rewrite the system in the matrix form $\dot{\mathbf{x}}=A \mathbf{u}$ with $A=\left(\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right)$.
The characteristic equation is $(-1-\lambda)(-1-\lambda)-1=\lambda^{2}+2 \lambda=0, \quad \lambda_{1}=0, \lambda_{2}=-2$. Thus, the equilibrium at $(0,0)$ is stable, as one eigenvalue is negative and the other is zero. The corresponding eigenvector can be chosen as $\mathbf{u}_{1}=\binom{1}{1}$ and $\mathbf{u}_{2}=\binom{1}{-1}$. Finally, the general solution to the system of ODEs is given by

$$
\binom{y_{1}}{y_{2}}=C_{1}\binom{1}{1}+C_{2} e^{-2 t}\binom{1}{-1}
$$

or in components

$$
y_{1}(t)=C_{1}+C_{2} e^{-2 t}, y_{2}(t)=C_{1}-C_{2} e^{2 t} .
$$

Note: In the above system, we have two real eigenvalues and one eigenvalue is zero. All points on the line of the eigenvector $\mathbf{u}_{1}=\binom{1}{1}$ obtained under $\lambda=0$ are all equilibrium points. You can check this by the ODE, when $y_{2}=y_{1}$ both $\dot{y}_{1}=0$ and $\dot{y}_{2}=0$. The equilibrium at $(0,0)$ is stable (see the phase portraits below) but not a stable node sink.

Figure 3: The phase portrait for problem B2) featuring a stable equilibrium.
3) $\dot{y_{1}}=-4 y_{1}-8 y_{2}, \dot{y_{2}}=4 y_{1}+4 y_{2}$

Solution: We rewrite the system in the matrix form $\dot{\mathbf{y}}=A \mathbf{u}$ with $A=\left(\begin{array}{cc}-4 & -8 \\ 4 & 4\end{array}\right)$. The characteristic equation is $(-4-\lambda)(4-\lambda)+32=\lambda^{2}+16=0$ which yields two complex-conjugate eigenvalues $\lambda_{1}=4 i, \lambda_{2}=-4 i$. we can know that the equilibrium at $(0,0)$ is a center, because the two eigenvalues are complex and their real parts both equal to zero. The eigenvector components for $\lambda_{1}=4 i$ are obtained by

$$
\left(\begin{array}{cc}
-4 & -8 \\
4 & 4
\end{array}\right)\binom{p_{1}}{q_{1}}=4 i\binom{p_{1}}{q_{1}} \Rightarrow \begin{gathered}
-4 p_{1}-8 q_{1}=4 i p_{1} \\
4 p_{1}+4 q_{1}=4 i q_{1}
\end{gathered}
$$

This gives $q_{1}=-\frac{1+i}{2} p_{1}$ so that the corresponding eigenvector can be chosen, for example, as $\mathbf{u}_{1}=\binom{2}{-1-i}$. We can immediately conclude that the eigenvector corresponding to $\lambda_{2}=-4 i$ can be chosen in the complex conjugate form $\mathbf{u}_{2}=$ $\binom{2}{-1+i}$. Finally, the general solution to the system of ODEs can be written in the form

$$
\binom{y_{1}}{y_{2}}=C_{1} e^{4 i t}\binom{2}{-1-i}+C_{2} e^{-4 i t}\binom{2}{-1+i}
$$

or in components

$$
y_{1}(t)=2 C_{1} e^{4 i t}+2 C_{2} e^{-4 i t}, y_{2}(t)=(-1-i) C_{1} e^{4 i t}+(-1+i) C_{2} e^{-4 i t} .
$$

For the initial conditions $y_{1}(0)=a$ and $y_{2}(0)=b$, where (a, b) can be any point in the phase plane

$$
\begin{gathered}
y_{1}(0)=C_{1}+C_{2}=a / 2, y_{2}(0)=-1\left(C_{1}+C_{2}\right)+\left(C_{2}-C_{1}\right) i=b \\
\Rightarrow C_{1}=\frac{a}{4}+\frac{2 b+a}{4} i, C_{2}=\frac{a}{4}-\frac{2 b+a}{4} i
\end{gathered}
$$

Thus the solution to this IVP will be

$$
\begin{gathered}
y_{1}(t)=2\left(\frac{a}{4}+\frac{2 b+a}{4} i\right) e^{4 i t}+2\left(\frac{a}{4}-\frac{2 b+a}{4} i\right) e^{-4 i t}=a \cos 4 t-(2 b+a) \sin 4 t, \\
y_{2}(t)=(-1-i)\left(\frac{a}{4}+\frac{2 b+a}{4} i\right) e^{4 i t}+(-1+i)\left(\frac{a}{4}-\frac{2 b+a}{4} i\right) e^{-4 i t}=(b+a) \sin 4 t+b \cos 4 t .
\end{gathered}
$$

As the phase portrait is a centre. If we plot one ellipse (one trajectory), then all other trajectories are just a set of nested ellipses around the equilibrium point in this linear system $(0,0)$. Thus, pick any values for (a, b), e.g. $(1,0)$, the solution to this IVP becomes

$$
\begin{gathered}
y_{1}(t)=\cos 4 t-\sin 4 t, \\
y_{2}(t)=\sin 4 t
\end{gathered}
$$

You can plot the ellipse by chose $\mathrm{t}=0, \frac{\pi}{16}, \frac{2 \pi}{16}, \frac{4 \pi}{16}, \frac{5 \pi}{16}, \frac{6 \pi}{16} \ldots$, which is the black ellipse in the Figure 4 . Then you draw rest trajectories accordingly.

Figure 4: The phase portrait for problem B3) featuring a center.

If you transform the $y_{1} y_{2}$ coordinates to new coordinates as described in our lecture, the trajectories will becomes counterclockwise circles around $(0,0)$.

C. Determine the type of fixed point for the dynamical systems

$$
\dot{y_{1}}=4 y_{2}, \dot{y_{2}}=-y_{1} .
$$

Then determine the solutions of the corresponding initial value problems for the general initial conditions $y_{1}(0)=a, y_{2}(0)=b$. Finally sketch the phase portraits in the $\left(y_{1}, y_{2}\right)$ phase plane.

Solution. The matrix associated with this system is given by $A=\left(\begin{array}{cc}0 & 4 \\ -1 & 0\end{array}\right)$. The characteristic equation is $\lambda^{2}+4=0$ with two complex conjugate roots $\lambda_{1}=2 i, \lambda_{2}=-2 i$.

As the eigenvalues are complex conjugate and their real parts equal to zero, the corresponding fixed point is a center.

The eigenvector corresponding to $\lambda_{1}=2 i$ can be found from

$$
\left(\begin{array}{cc}
0 & 4 \\
-1 & 0
\end{array}\right)\binom{p_{1}}{q_{1}}=2 i\binom{p_{1}}{q_{1}}, \quad \Rightarrow q_{1}=\frac{i}{2} p_{1}
$$

so that the eigenvectors are $\mathbf{u}_{1}=\binom{1}{\frac{i}{2}}$ and $\mathbf{u}_{2}=\binom{1}{-\frac{i}{2}}$. The general solution has the form

$$
\binom{y_{1}}{y_{2}}=C_{1} e^{2 i t}\binom{1}{\frac{i}{2}}+C_{2} e^{-2 i t}\binom{1}{-\frac{i}{2}} .
$$

The initial conditions yield
$y_{1}(0)=C_{1}+C_{2}=a, y_{2}(0)=\frac{i}{2}\left(C_{1}-C_{2}\right)=b \Rightarrow C_{1}=\frac{1}{2}(a-2 i b), C_{2}=\frac{1}{2}(a+2 i b) y_{2}=$
so that the solution to the general initial value problem is given by

$$
y_{1}=\frac{1}{2}(a-2 i b) e^{2 i t}+\frac{1}{2}(a+2 i b) e^{-2 i t}=a \cos 2 t+2 b \sin 2 t,
$$

and similarly

$$
y_{2}=\frac{i}{4}(a-2 i b) e^{2 i t}-\frac{i}{4}(a+2 i b) e^{-2 i t}=-\frac{a}{2} \sin 2 t+b \cos 2 t .
$$

We notice that $y_{1}^{2}+4 y_{2}^{2}=a^{2}+4 b^{2}$ describing ellipses in phase space. The check the direction of the trajectories (arrows), we can pick up any initial point, for example, $y_{1}(0)=1, y_{2}(0)=0$, then the tangent vector at this point is $\binom{\dot{y}_{1}(0)}{\dot{y}_{2}(0)}=A\binom{y_{1}(0)}{y_{2}(0)}=$ $\left(\begin{array}{cc}0 & 4 \\ -1 & 0\end{array}\right)\binom{1}{0}=\binom{0}{-1}$. Thus the trajectory starting at $(1,0)$ will move towards negative y values (clockwise).

Note the trajectories here are clockwise as it is in the original $y_{1} y_{2}$ coordinates. If you transform the $y_{1} y_{2}$ coordinates to new coordinates as described in our lecture, the trajectories will becomes counterclockwise circles around $(0,0)$.

Figure 5: Phase portrait for problem C featuring a centre.

II. Homework

A. Determine the solution of the initial value problem

$$
\dot{y_{1}}=y_{1}-4 y_{2}, \dot{y_{2}}=4 y_{1}+y_{2}, y_{1}(0)=0, y_{2}(0)=1, t \geq 0
$$

and the type of fixed point. Then sketch the trajectory in the $\left(y_{1}, y_{2}\right)$ phase plane corresponding to the chosen initial values in the specified range of t.

Solution. The matrix associated with the system is given by $A=\left(\begin{array}{cc}1 & -4 \\ 4 & 1\end{array}\right)$. The characteristic equation is $\lambda^{2}-2 \lambda+17=0$ with two complex conjugate roots $\lambda_{1}=1+4 i$, $\lambda_{2}=1-4 i$. The eigenvector corresponding to $\lambda_{1}=1+4 i$ can be found from

$$
\left(\begin{array}{cc}
1 & -4 \\
4 & 1
\end{array}\right)\binom{p_{1}}{q_{1}}=(1+4 i)\binom{p_{1}}{q_{1}} \Rightarrow q_{1}=-i p_{1}
$$

so that the eigenvectors are $\mathbf{u}_{1}=\binom{1}{-i}$ and $\mathbf{u}_{2}=\binom{1}{i}$. The general solution has the form

$$
\binom{y_{1}}{y_{2}}=C_{1} e^{t+4 i t}\binom{1}{-i}+C_{2} e^{t-4 i t}\binom{1}{i} .
$$

The initial conditions yield

$$
y_{1}(0)=C_{1}+C_{2}=0, y_{2}(0)=C_{1}(-i)+C_{2} i=1, \Rightarrow C_{1}=\frac{i}{2}, C_{2}=\frac{-i}{2}
$$

so that the solution to the general initial value problem is given by

$$
y_{1}=\frac{i}{2} e^{t+4 i t}-\frac{i}{2} e^{t-4 i t}=-e^{t} \sin 4 t
$$

and similarly

$$
y_{2}=\frac{i}{2}(-i) e^{t+4 i t}-\frac{i}{2} i e^{t-4 i t}=e^{t} \cos 4 t
$$

The fixed point is an unstable focus and trajectories are spiraling away from the origin for $t \rightarrow \infty$. For the specified initial conditions the initial tangent vector to the trajectory is $\dot{y_{1}}(0)=-4, \dot{y_{2}}(0)=1$ so that the rotation goes anticlockwise; see the sketch below.

III. Applications involving Dynamical Systems

A. Using the relation between charge and current given by $I=d Q / d t$, rewrite the following

$$
L \frac{d I}{d t}+R I+\frac{1}{C} Q=E(t)
$$

as a second order equation in the charge Q. Use this to obtain an ODE for the current I as

$$
L \frac{d^{2} I}{d t^{2}}+R \frac{d I}{d t}+\frac{1}{C} I=\dot{E}(t)
$$

Figure 6: The trajectory solving this initial value problem) with an unstable focus.

Solution. Let differentiation with respect to t be denoted by a dot (Newton's notation for independent variable as time t). Then we have $I=\dot{Q}$ and consequently, $\dot{I}=\ddot{Q}$. The given equation can be rewritten in terms of Q as

$$
E(t)=L \frac{d I}{d t}+R I+\frac{1}{C} Q=L \dot{I}+R I+\frac{1}{C} Q=L \ddot{Q}+R \dot{Q}+\frac{1}{C} Q
$$

which is a second-order equation in Q.
We can either differentiating this 2nd-order ODE or the original 1st-order ODE over t, and using the fact that $\dot{Q}=I$, we obtain

$$
L \dddot{Q}+R \ddot{Q}+\frac{1}{C} \dot{Q}=L \ddot{I}+R \dot{I}+\frac{1}{C} I=\dot{E}(t)
$$

which is a second order equation in I.
B. Assuming the system is closed and $\dot{E}(t)=0$, write the second order equation in I as a system of two first order equations using $y_{1}=I$ and $y=d I / d t$. Show that $y_{1}=0, y_{2}=0$ is a critical point.

Solution. Given $\dot{E}(t)=0$, we have $L \ddot{I}+R \dot{I}+\frac{1}{C} I=0$. Following the suggested definitions for x and y,

$$
\begin{aligned}
& y_{1}=I \Rightarrow \dot{y}_{1}=\dot{I}=y \\
& y_{2}=\dot{I} \Rightarrow \dot{y}_{2}=\ddot{I}=\frac{1}{L}\left(-R \dot{I}-\frac{1}{C} I\right)=\frac{1}{L}\left(-R y-\frac{1}{C} x\right) .
\end{aligned}
$$

Rewriting the equation as a linear system, we find

$$
\binom{\dot{y}_{1}}{\dot{y}_{2}}=\left(\begin{array}{cc}
0 & 1 \\
-\frac{1}{L C} & -\frac{R}{L}
\end{array}\right)\binom{y_{1}}{y_{2}} .
$$

We immediately see that $(x, y)=(0,0)$ is a critical point of the system since both the left and right hand sides vanish for this solution.

