University of London

MTH5123
Formative Assessment: Week 10

Differential Equations
G. Bianconi

- Each Coursework consists of three parts:
I. Practice problems
II. Mock Quiz
III. Exploration problems
- A selection of solutions to the listed problems will be posted on QMPlus by the end of Week 10 and discussed during the tutorials.
- I encourage all students to learn and check their computational answers using math software such as Mathematica, MATLAB, etc. Using numerical software is a fun practice and will help you to visualise your solutions.

I. Practice Problems

A. Determine the type of equilibrium at $y_{1}=0, y_{2}=0$ for the following ODE systems . Hint: Both question appeared in Coursework 8, and you can check the solutions to the IVP and also sketch of trajectories there.

1) $\dot{y_{1}}=-\frac{1}{2} y_{1}+\frac{5}{2} y_{2}, \dot{y_{2}}=\frac{5}{2} y_{1}-\frac{1}{2} y_{2}, y_{1}(0)=a, y_{2}(0)=b$.
2) $\dot{y_{1}}=-y_{1}+5 y_{2}, \dot{y_{2}}=-y_{1}+y_{2}, \quad y_{1}(0)=0, y_{2}(0)=4$.
B. Determine the general solution and sketch the phase portraits of the following systems of linear differential equations:
3) $\dot{y_{1}}=-y_{1}+6 y_{2}, \dot{y_{2}}=-3 y_{1}+8 y_{2}$
4) $\dot{y_{1}}=-y_{1}+y_{2}, \dot{y_{2}}=y_{1}-y_{2}$
5) $\dot{y_{1}}=-4 y_{1}-8 y_{2}, \dot{y_{2}}=4 y_{1}+4 y_{2}$
C. Determine the type of fixed point for the dynamical systems

$$
\dot{y_{1}}=4 y_{2}, \dot{y_{2}}=-y_{1} .
$$

Then determine the solutions of the corresponding initial value problems for the general initial conditions $y_{1}(0)=a, y_{2}(0)=b$. Sketch the phase portraits in the $\left(y_{1}, y_{2}\right)$ phase plane.
D. Determine the solution of the initial value problem

$$
\dot{y_{1}}=y_{1}-4 y_{2}, \dot{y_{2}}=4 y_{1}+y_{2}, y_{1}(0)=0, y_{2}(0)=1, t \geq 0
$$

and the type of fixed point. Then sketch the trajectory in the $\left(y_{1}, y_{2}\right)$ phase plane corresponding to the chosen initial values in the specified range of t.

II. Mock Quiz

Train yourself for Coursework 2 by answering Mock Quiz Week 10.

III. Further Exploration: Applications involving Dynamical Systems

Second order, constant-coefficient linear differential equations appear in many physical models, such as the spring-mass system studied in the first half of the semester. In this exercise, we see a second example, using electrical circuits.

To model the flow of electric current in a simple series circuit (involving a resistor a capacitor and an inductor in series), one uses Kirchhoff's Law to obtain

$$
L \frac{d I}{d t}+R I+\frac{1}{C} Q=E(t)
$$

Here L, R, and C are not variables but positive parameters (referred to as the inductance, resistance and capacitance, respectively). $E(t)$ is the impressed voltage (in volts) which is a function of our independent variable $t . Q$ and I are both variables depending on t, where Q is the total charge on the capacitor at time t (in coulombs) and I is the current at time t (in amperes). In addition, the relation between charge and current is $I=d Q / d t$.
A. 1) Rewrite the above equation as a 2 nd-order ODE in the charge Q (i.e. an ODE only containing variable Q, independent variable t, functions of t, and parameters L, R, and C.
2) Show how to get a new 2nd-order ODE in the current I as

$$
L \frac{d^{2} I}{d t^{2}}+R \frac{d I}{d t}+\frac{1}{C} I=\dot{E}(t)
$$

B. 1) Assuming $\dot{E}(t)=0$ (which means the system is closed), write the above 2nd-order ODE in I as a system of two 1st-order ODEs with variables y_{1} and y_{2}. (Hint: assume $y_{1}=I$ and $y_{2}=d I / d t$ and follow the method we learned in 2.1 scanned lecture notes).
2) Show that $y_{1}=0, y_{2}=0$ is a critical point.

In the next Coursework, we shall analyze the nature and stability of the critical point as a function of the parameters (in this case, L, R and C).

Remark: exactly the same analysis can be used to study the equation of motion for a damped spring-mass system $m \ddot{u}+c \dot{u}+k u=0$, where m, k, c are positive constants. Full details for the derivation of the equation appearing in this example can be found in Boyce © DiPrima, Section 3.7.

