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4.3.2 Phase portrait shape when D = (TrA)2 − 4 detA > 0 & detA < 0:
saddle-type (unstable)

But first we generalize our analysis: The last example fulfills D = (TrA)2 − 4 detA > 0
for which the matrix A has two distinct real eigenvalues. For systems with D > 0 specific
coordinates can always be defined as in this example: Having two real linearly independent

eigenvectors u1 =

(
p1
q1

)
6= 0 and u2 =

(
p2
q2

)
6= 0 of the matrix A allows us to build a

non-singular matrix U =

(
p1 p2
q1 q2

)
, detU 6= 0, which can be inverted giving U−1. We then

change the coordinates (y1, y2) into new coordinates (ỹ1, ỹ2) via the transformation ỹ = U−1y
such that the system of two ODEs in the new coordinates takes the form d

dt
ỹ = Ãỹ with

Ã = U−1AU generalizing (4.16). As Ã was shown to be diagonal, Ã =

(
λ1 0
0 λ2

)
, the two

equations of the system defined by Ã are now uncoupled and can be solved straightforwardly.
Assuming the initial conditions ỹ1(0) = ã, ỹ2(0) = b̃ we arrive at ỹ1(t) = ãeλ1t , ỹ2(t) = b̃eλ2t.
We see that the asymptotic behaviour and the phase portrait is determined by the signs
of the (real) eigenvalues λ1 and λ2: If they are of different signs, λ2 < 0 < λ1, we have
ỹ2 → 0 (t → ∞) whereas ỹ1 → ∞ for ã > 0 and ỹ1 → −∞ for ã < 0 for (t → ∞). Nearby
trajectories are given by hyperbolic curves

ỹ2 = b̃

(
ỹ1
ã

)λ2/λ1
(4.21)

if ã 6= 0 and by the straight line ỹ1 = 0 if ã = 0. After this transformation the phase portrait
qualitatively always looks like the one in Fig.4.1 (right), which is called a saddle. In the
original coordinates the saddle will retain its topology, but generally it may be rotated and
distorted; see Fig. 4.2 for two examples.
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Figure 4.2: Two examples of phase portraits of saddle-type.

Example:
Find the general solution of the system of ODEs(

ẋ
ẏ

)
= A

(
x
y

)
, A =

(
3
2
−1

2

−1
2

3
2

)
(4.22)

and sketch the trajectories in phase space.

Solution:
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We find (exercise for you) λ1 = 1, u1 =

(
1
1

)
and λ2 = 2, u2 =

(
1
−1

)
. According to

(4.19) the solution is given by(
x
y

)
= c1e

t

(
1
1

)
+ c2e

2t

(
1
−1

)
.

The initial conditions y1(0) = a, y2(0) = b yield a = c1 + c2, b = c1 − c2. Solving for c1, c2
we get c1 = (a + b)/2, c2 = (a − b)/2. The explicit expressions for the time dependence of
the coordinates in the (y1, y2) plane are thus given by

x =
a+ b

2
et +

a− b
2

e2t , y =
a+ b

2
et − a− b

2
e2t .

4.3.3 Phase portrait shapes when D = (TrA)2− 4 detA > 0& detA > 0:
unstable node (TrA > 0) and stable (TrA < 0) node

How do the trajectories look like for different initial conditions? We start with b = a, which
implies y1 = aet, y2 = aet. We conclude that y2 = y1 ∀t, i.e., this trajectory corresponds to
motion along a straight line with slope one away from the origin, since both x and y tend
to infinity when t → ∞. Similarly, for b = −a we have y2 = −y1 = −a e2t ∀t, which de-
scribes motion along a straight line away from the origin. These two special straight lines,
which intersect at the origin and partition the (y1, y2) plane into four sectors, define the
invariant manifolds for the present system; see Fig. 4.3. Trajectories that start from initial
conditions away from the invariant manifolds tend to be asymptotically parallel to one of
the manifolds y2 = −y1 for t→∞, whereas close to the origin they are tangent to the other
manifold y2 = y1. Such a phase portrait is topologically non-equivalent to the previous case.

Figure 4.3: Phase portrait of the system (4.22) for which q1/p1 = 1, q2/p2 = −1.
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As before, we now generalize our analysis: The last example still fulfills D > 0 like the
previous one, but while in the first example the two eigenvalues had different signs, in the
second one they have the same sign. In this case one can again perform a transformation
into new coordinates ỹ1, ỹ2 exactly as before, and the trajectories are again given by (4.21)

ỹ2 = b̃
(
ỹ1
ã

)λ2/λ1
. However, due to both eigenvalues having the same sign in this case the

curves are no longer hyperbolic. Instead, for 0 > λ1 > λ2 they look like a set of parabolas
tangent to the horizontal axis ỹ2 = 0 at the origin of the (ỹ1, ỹ2) plane while for λ1 > λ2 > 0
they are tangent to the vertical axis ỹ1 = 0; see Fig. 4.4 for examples.

The direction of motion along these curves is towards the origin if the eigenvalues are
both negative, in which case the phase portrait is called a stable node. If the eigenvalues
are both positive we have an unstable node with motion away from the origin; see again
Fig. 4.4. Finally, if the initial conditions are chosen on the coordinate axis ỹ1 = 0 or ỹ2 = 0,
the trajectory will coincide with the corresponding axis, which in turn defines an invariant
manifold.

I
J

Figure 4.4: Phase portraits for a stable node with 0 > λ1 > λ2 (left) and an unstable node
with λ1 > λ2 > 0 (right).

In the original coordinates (y1, y2) the corresponding phase portraits retain these main
features. Here the role of the invariant manifolds will be played by two straight lines
intersecting at the origin defined by the corresponding eigenvectors, y2 = q1

p1
y1 and y2 = q2

p2
y1;

see Fig. 4.3.

4.3.4 Phase portrait shape when D = (TrA)2 − 4 detA < 0:
Centre (stable, TrA = 0), Spiral in (stable, TrA < 0) and Spiral out
(unstable, TrA > 0)

Now we consider the second general case D = (TrA)2 − 4 detA < 0 starting with another
example.

Example:
Find the general solution of the system of ODEs

ẏ1 = y2 , ẏ2 = −2y1 + 2y2

and visualize the trajectory which corresponds to the initial conditions y1(0) = 0 , y2(0) = 1.

Solution:
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Rewriting the system in matrix form we find A =

(
0 1
−2 2

)
. Its eigenvalues and eigen-

vectors were already given in example (ii) on p.5 of the lecture notes of week 9 as λ1 =

1 + i, u1 =

(
1

1 + i

)
and λ2 = 1 − i, u2 =

(
1

1− i

)
. Since the eigenvectors are linearly

independent, according to (4.19) the general solution is(
y1
y2

)
= c1e

(1+i)t

(
1

1 + i

)
+ c2e

(1−i)t
(

1
1− i

)
(4.23)

or equivalently

y1 = et
(
c1e

it + c2e
−it) , y2 = et

(
c1(1 + i)eit + c2(1− i)e−it

)
.

The coefficients c1, c2 are determined by the above initial values,

0 = c1 + c2, 1 = c1(1 + i) + c2(1− i) ⇒ c1 =
1

2i
, c1 = − 1

2i
.

This leads to the trajectory

y1 = et sin t , y2 = et(sin t+ cos t) ,

which describes a spiral in the form of a rotation in the (y1, y2) plane around the origin with
period π, with the distance to the origin increasing exponentially in time. For example, the
trajectory crosses the vertical axis y1 = 0 periodically at times tn = 0, π, 2π, . . . , πn, . . .,
and the coordinates of the points of intersections are given by (−1)netn(0, 1). Similarly, the
trajectory intersects the diagonal y1 = y2 periodically at times t∗n = π

2
, 3
2
π, . . . ,

(
n+ 1

2

)
π, . . .,

and the coordinates of points of intersections are given by (−1)net
∗
n(1, 1). We can find the

direction of the tangent vector to the trajectory at t = 0 from the system of ODEs com-
bined with the initial conditions yielding ẏ1(0) = y2(0) = 1 , ẏ2(0) = −2y1(0) + 2y2(0) = 2.
Hence, the trajectory starts pointing towards the direction (1, 2). The resulting trajectory
is sketched in Fig. 4.5.

F

Figure 4.5: Sketch of the trajectory solving the initial value problem in the above example
by spiraling away from the origin (please ignore the tilted axes).
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Again we generalize our analysis for systems with D < 0 where the characteristic
equation has two complex conjugate roots,

λ1,2 = r ± iω , r =
1

2
Tr(A) , ω =

√
detA− r2 . (4.24)

As we will see in a moment, the problem simplifies if we change variables (x, y) → (ỹ1, ỹ2)
by using the linear transformation

ỹ1 = Wy1 , W =

(
a21 r − a11
0 ω

)
. (4.25)

In the new coordinates (ỹ1, ỹ2) the system of ODEs takes the form

d

dt
ỹ1 = Ãỹ1 , Ã = WAW−1 =

(
r −ω
ω r

)
, (4.26)

After this new transformation the matrix Ã is not diagonal. Its eigenvalues and eigenvectors

can be found to λ1 = r+iω with eigenvector u1 =

(
1
−i

)
and λ2 = r−iω with u2 =

(
1
i

)
.

According to (4.19) we can write the general solution to (4.26) as(
ỹ1
ỹ2

)
= c1e

(r+iω)t

(
1
−i

)
+ c2e

(r−iω)t
(

1
i

)
. (4.27)

The values of c1 and c2 can be determined by the two initial values ỹ1(0) = ã and ỹ2(0) = b̃,

which gives ã = c1 +c2, b̃ = −i(c1−c2) leading to c1 = ã+ib̃
2
, c2 = ã−ib̃

2
. Using Euler’s formula

e±iωt = cosωt± i sinωt we obtain the solution for given initial conditions

ỹ1 = ert
(
ã cos (ωt)− b̃ sin (ωt)

)
, ỹ2 = ert

(
b̃ cos (ωt) + ã sin (ωt)

)
. (4.28)

These two equations can be combined to yield the identity

ỹ1
2 + ỹ2

2 = e2rt(ã2 + b̃2) , (4.29)

which gives us the key for the phase portrait of the system.

Centre (stable) phase portrait
First suppose that r = 0. In this case every trajectory starting at t = 0 from the point (ã, b̃)

in the plane is represented by a circle of radius
√
ã2 + b̃2 centered at the origin. The fixed

point in such a phase portrait is called a centre; see Fig. 4.6 (left). In original coordinates
circular trajectories are generally deformed into ellipses in the plane, see Fig. 4.6 (right).
The arrows show the direction of rotation along the ellipses with increasing time. They can
be inferred from the initial tangent vector ẏ = (ẏ1(0), ẏ2(0))T .

Stable focus (spiral in and stable) phase portait
If r < 0 we see that asymptotically both ỹ1 → 0 (t → ∞) and ỹ2 → 0 (t → ∞). Hence,
every trajectory approaches the origin along a spiral of shrinking radius.
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Figure 4.6: Phase portrait for a centre-type fixed point in transformed coordinates (left)
and in original coordinates (right).

Unstable focus (spiral out and unstable) phase portrait
Similarly, if r > 0 the trajectory spirals away from the origin with ever increasing radius.

These two types of phase portraits are known as a stable focus, and respectively an
unstable focus; see Fig. 4.7 for examples. Again, in original coordinates (y1, y2) the phase
portraits retain their topological features, but the trajectories may be distorted, i.e., circular
spirals may deform into an elliptic type, as we have already seen in the last example.

�

D

Figure 4.7: Phase portraits of fixed points of focus type: a stable one (left) and a distorted
unstable one (right).

The only remaining case is D = 0, i.e., (TrA)2 = 4 detA where both eigenvalues are equal
and real, λ1 = λ2 = λ = a11+a22

2
. This is a specific case yielding a special type of nodes,

and in this module we will not dwell upon its analysis. This completes our classification
of the different types of phase portraits in autonomous systems of two linear ODEs. With
more advanced mathematical techniques it is possible to prove that the phase portrait of a
nonlinear system (4.5) in the vicinity of an isolated fixed point is topologically equivalent to
the phase portrait of the corresponding linear approximation provided the real parts of
all eigenvalues are nonzero. Some information about this fact will be given in the next
chapter.
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