University of London

MTH5123
Formative Assessment Week 9

Differential Equations
G. Bianconi

- This coursework consists of three parts:
I. Practice problems
II. Mock Quiz
III. More Practice to connect week 9 and 10 learning
- A selection of solutions to the listed problems will be posted on QMPlus by the end of Week 9 and discussed during the tutorials.
- I encourage all students to learn and check their computational answers using math software such as Mathematica, MATLAB, etc. Using numerical software is a fun practice and will help you to visualise your solutions.

I. Practice Problems

A. Determine the eigenvalues and eigenvectors of the following matrices:

$$
\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \quad\left[\begin{array}{cc}
2 & 0 \\
0 & -3
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]
$$

B. Find and sketch the solution of the following initial value problems

1) $\dot{y_{1}}=-\frac{1}{2} y_{1}+\frac{5}{2} y_{2}, \dot{y_{2}}=\frac{5}{2} y_{1}-\frac{1}{2} y_{2}, y_{1}(0)=a, y_{2}(0)=b$.
2) $\dot{y_{1}}=-y_{1}+5 y_{2}, \dot{y_{2}}=-y_{1}+y_{2}, \quad y_{1}(0)=0, y_{2}(0)=4$.
C.
(1) Linearize $\dot{y_{1}}=y_{1}+e_{2}^{y}-\cos y_{2}, \dot{y_{2}}=3 y_{1}-y_{2}-\sin y_{2}$ around the fixed point at $y_{1}=$ $y_{2}=0$ and find the eigenvalues.
(2) Linearize the following equation $\dot{y_{1}}=-2 y_{1}-3 y_{2}+y_{1}^{5}, \dot{y_{2}}=y_{1}+y_{2}-y_{2}^{2}$ around the fixed point at $y_{1}=y_{2}=0$ and find the eigenvalues.
D. (1) Compute all equilibria of the non-linear ODE system

$$
\dot{y_{1}}=-y_{1}+3 y_{2}-y_{1}^{2}+3 y_{1} y_{2}, \dot{y_{2}}=-3 y_{1}-y_{2}
$$

and linearise this ODE systems around its equilibria separately and write down their matrix forms.
(2) Determine the general solution of the linearised system at $y=0$. Find the function $x(t)$ that solves the initial value problem for the system above specified by the initial conditions

$$
y_{1}(0)=a, y_{2}(0)=b
$$

and express it in terms of real-valued functions. Sketch the trajectories of this autonomous system in phase space when $a=b=1$.

II. Mock Quiz

Train yourself for Coursework 2 by answering Mock Quiz Week 9.
III. More Practice: graphing trajectories and analysis of dynamical systems Consider the dynamical system given by

$$
\left\{\begin{array}{l}
\dot{y_{1}}=y_{2} \\
\dot{y_{2}}=-2 y_{1}+2 y_{2}
\end{array}\right.
$$

1) Rewrite the system in matrix form and find the eigenvalues and eigenvectors of the associated coefficient matrix.
2) Find the general solution of the system of ODEs, justifying your answer.
3) Sketch the trajectory corresponding to the initial condition $y_{1}(0)=0, y_{2}(0)=1$.
