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4.2.2 General properties of 2× 2 matrices with real entries

First we recall the notion of the trace and the determinant, which for 2× 2 matrices are
given by

TrA = a11 + a22 and detA = a11a22 − a12a21 ,
respectively. The importance of the determinant is reflected in the fact that the condition
detA 6= 0 ensures the possibility to find the inverse matrix A−1, which satisfies A−1A =

AA−1 = Id. The so-called identity matrix Id =

(
1 0
0 1

)
plays the same role in matrix

algebra as the unity number 1 for usual numbers. Explicitly, the inverse of any 2×2 matrix
with detA 6= 0 is given by

A−1 =
1

detA

(
a22 −a12
−a21 a11

)
. (4.7)

The operation of matrix inversion is of fundamental importance, as it allows one to find the
unique solution y of a (non-singular) system of linear equations Ay = b as y = A−1b.

A vector u =

(
p
q

)
6= 0 is called an eigenvector of the matrix A if the equality Au = λu

holds for some value of the parameter λ known as the corresponding eigenvalue.

Theorem:

1. There are two eigenvalues of any 2× 2 matrix A, which are the roots of the quadratic
equation

det (A− λId) = λ2 − TrA · λ+ detA = 0 . (4.8)

These eigenvalues are either both real or complex conjugate to each other, λ1 = λ2.

2. If λ1 6= λ2 then the two eigenvectors u1 and u2 are linearly independent.1

3. If a12 = a21 then either λ1 = λ2 or the two eigenvectors are orthogonal, u1 · u2 ≡
p1p2 + q1q2 = 0.

Proof:
This proof is not covered by the lectures and is not examinable. It is left for students who
are interested to work themselves through more mathematical details.

To verify the first statement we use u = Id ·u∀u, hence the condition of being an eigenvalue
can be rewritten equivalently as

Au = λ Id · u ⇔ (A− λId) · u = 0

for some u 6= 0. Now assuming det (A− λId) 6= 0 we immediately see that

u = (A− λId)−10 = 0 ,

which is a contradiction, hence necessarily det (A− λId) = 0. Furthermore, writing

A− λId ≡
(
a11 − λ a12
a21 a22 − λ

)
1Two vectors u1,u2 are linearly independent if their linear combination c1u1 + c2u2 can be zero only if

both c1 and c2 are simultaneously zero. Alternatively, two vectors are linearly dependent if there exists a
constant k 6= 0 such that u2 = ku1.
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we see that indeed
det (A− λId) = (a11 − λ)(a22 − λ)− a12a21

= λ2 − λ(a11 + a22) + (a11a22 − a12a21) ≡ λ2 − TrA · λ+ detA

as required.
To verify the second statement it is enough to demonstrate that if there exists a k 6= 0 such
that u2 = ku1 then necessarily λ1 = λ2. For this we consider the eigenequation Au1 = λ1u1

and multiply it with u2 from the left getting: u2Au1 = λ1u2 · u1. In the same way we
take the second eigenequation Au2 = λ2u2 and multiply it with u1 from the left yielding
u1Au2 = λ2u1 · u2. Subtracting both equations and using the symmetry of the scalar
product u2 · u1 = u1 · u2 yields the relation

u2Au1 − u1Au2 = (λ1 − λ2)u1 · u2 . (4.9)

Now, substituting here u2 = ku1 yields on the left-hand side zero, whereas the right-hand
side becomes equal to k(λ1 − λ2)u1 · u1. As u1 6= 0 and k 6= 0 we conclude that necessarily
λ1 = λ2 as required. The final part of the theorem follows from the fact that for a12 = a21
the left-hand side of (4.9) is identically zero for any choice of the vectors u1 and u2 (please
check!). To make the right-hand side vanishing we therefore have to require either λ1 = λ2
or u1 · u2 = 0 implying the orthogonality of the eigenvectors.

Examples:

(i) A =

(
−4 6
−3 5

)
with λ1 = 2 , u1 =

(
1
1

)
and λ2 = −1 , u2 =

(
2
1

)
.

(ii) A =

(
0 1
−2 2

)
with λ1 = 1 + i , u1 =

(
1

1 + i

)
and λ2 = 1− i , u2 =

(
1

1− i

)
.

Note: Eigenvectors are determined up to a nonzero factor.

The last useful property needed to be mentioned is as follows: Suppose a matrix A has two
distinct eigenvalues λ1 6= λ2 and an associated pair of two linearly independent eigenvectors

u1 =

(
p1
q1

)
6= 0 and u2 =

(
p2
q2

)
6= 0. Then the matrix U =

(
p1 p2
q1 q2

)
is nonsingular,

that is detU 6= 0, and therefore can be inverted giving U−1. Moreover, the matrix U−1AU

turns out to be always diagonal and equal to

(
λ1 0
0 λ2

)
. The last fact follows from

AU =

(
a11 a12
a21 a22

)(
p1 p2
q1 q2

)
=

(
λ1p1 λ2p2
λ1q1 λ2q2

)
= U

(
λ1 0
0 λ2

)
,

where we have used that the conditionAu = λu for u =

(
p
q

)
is equivalent to a11pi+a12qi =

λpi and a21pi+a22qi = λqi , i = 1, 2. Now we will use these properties for solving the system
of linear ODE’s.

4.2.3 General analysis of the linearised ODE system for
D = (TrA)2 − 4 detA 6= 0

Solving the characteristic equation det (A− λId) = λ2 − TrA · λ + detA = 0 . for λ yields

λ = TrA
2
± 1

2

√
(TrA)2 − 4 detA. This shows that in this case we must have two distinct
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roots. In the case D = (TrA)2 − 4 detA > 0 these roots are real,

λ1 =
1

2

(
TrA+

√
D
)
> λ2 =

1

2

(
TrA−

√
D
)
,

hence the corresponding eigenvectors u1 and u2 must also be real and linearly independent.
In the opposite case D = (TrA)2 − 4 detA < 0 the two roots are complex conjugate,

λ1 =
1

2

(
TrA+ i

√
|D|
)
, λ2 =

1

2

(
TrA− i

√
|D|
)
,

and the eigenvectors may be complex but are still linearly independent, as λ1 6= λ2.
Given a pair of linearly independent vectors we know that we can write an arbitrary vector
of the same dimension as a linear combination of these two vectors.

We can thus look for a solution y ≡
(
y1
y2

)
of the ODE system

(
ẏ1
ẏ

)
= A

(
y1
y2

)
, A =(

a11 a12
a21 a22

)
in the form of y = c1u1 + c2u2, where the coefficients c1 and c2 are assumed

to depend on t. We then have ẏ = ċ1u1 + ċ2u2, which by substituting into the above ODE
system gives the chain of identities

ċ1u1 + ċ2u2 = A(c1u1 + c2u2) = c1λ1u1 + c2λ2u2 (4.10)

or, rearranging,
(ċ1 − λ1c1)u1 = −(ċ2 − c2λ2)u2 , (4.11)

which must hold at any moment of time t. Using linear independence of the two eigenvectors
we conclude that simultaneously we must have

ċ1 = λ1c1 and ċ2 = λ2c2 .

These separable equations are immediately solved to produce

c1(t) = c1e
λ1t , c2(t) = c2e

λ2t , (4.12)

where c1,2 are constants. We conclude that the general solution to this ODE system in
such a case is given by

y(t) = c1e
λ1tu1 + c2e

λ2tu2 . (4.13)

For any initial value problem with the ODE system,

(
ẏ1
ẏ

)
= A

(
y1
y2

)
, A =

(
a11 a12
a21 a22

)
,

the values of c1 and c2 will be determined by the initial conditions y1(0) = a and y2(0) = b

and the eigenvectors u1 =

(
p1
q1

)
and u2 =

(
p2
q2

)
as, according to (4.13), a = c1p1 +

c2p2 , b = c1q1 + c2q2.

Example:

Consider the ODE system,

(
ẏ1
ẏ

)
= A

(
y1
y2

)
, A =

(
a11 a12
a21 a22

)
, with the particular

choice of A (
ẏ1
ẏ2

)
= A

(
y1
y2

)
, A =

(
−4 6
−3 5

)
. (4.14)
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In exercise (i) on p.5 we have found that λ1 = 2 , u1 =

(
1
1

)
and λ2 = −1 , u2 =

(
2
1

)
.

According to (4.13), the solution is given by(
y1
y2

)
= c1e

2t

(
1
1

)
+ c2e

−t
(

2
1

)
.

The initial conditions x(0) = a, y(0) = b can now be written as

a = c1 + 2c2 , b = c1 + c2 .

Solving these equations we get c2 = a − b , c1 = 2b − a so that the explicit expressions for
the time dependence of the coordinates in the (y1, y2) plane are given by

y1 = (2b− a)e2t + 2(a− b)e−t, y2 = (2b− a)e2t + (a− b)e−t .

4.3 Phase portraits for linearised systems

The eigenvalues of the linearised system are λ = TrA
2
± 1

2

√
D, where D = (TrA)2 − 4 detA.

We can classify the phase portraits of our linear systems based the different situations of
the eigenvalues.

4.3.1 Transformation of phase portraits between coordinates through
invariant manifolds

In our example in last section, we have two distinct real eigenvalues, where λ1 = 2 and
λ2 = −1. How do the trajectories look like for different initial conditions, which means
when a, b have different values?
Consider when b = a/2, which implies y1 = ae−t, y2 = a

2
e−t. We conclude that y2 = y1/2 ∀t

, i.e., this trajectory corresponds to motion along a straight line with slope 1/2 towards
the origin (since both y1 and y2 tend to zero for t → ∞). Similarly, for b = a we have
y2 = y1 = a e2t ∀t, which describes motion along a straight line away from the origin.
These two special straight lines are known as invariant manifolds, which correspond to
the two lines on top of the two eigenvectors. They intersect at the origin and partition the
phase space, which is (y1, y2) plane, into four sectors, see Fig. 4.1 (left). Asymptotically the
trajectories which start from initial conditions such that b > a/2 tend to approach to the
line y2 = y1 → +∞ for t → ∞, whereas the trajectories with initial conditions such that
b < a/2 tend to approach to the line y2 = y1 → −∞ for t→∞.
In the above example we have fully understood the structure of the trajectories in the
(y1, y2) phase space, which is called a phase portrait. This picture is looking rather
complicated, but it simplifies if we transform into specific coordinates. For this purpose

we introduce the vector ỹ ≡
(
ỹ1
ỹ2

)
of new coordinates ỹ1, ỹ2 related to the vector of old

coordinates y =

(
x
y

)
via ỹ = U−1y, or equivalently y = U ỹ. The columns of the 2 × 2

matrix U are chosen to be the eigenvectors u1 =

(
1
1

)
and u2 =

(
2
1

)
, which implies
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Figure 4.1: Phase portraits of the ODE (4.14) in old (left) and in new (right) coordinates.

U−1 = −
(

1 −2
−1 1

)
. This yields the chain of identities

d

dt
ỹ = U−1 d

dt
y = U−1Ay = U−1AU ỹ (4.15)

and accordingly the system of ODEs in new coordinates

d

dt
ỹ = Ãỹ , Ã = U−1AU =

(
2 0
0 −1

)
. (4.16)

Hence, this system is equivalent to ˙̃y1 = 2ỹ1, ˙̃y2 = −ỹ2. Specifying initial conditions in new
coordinates as ỹ1(0) = ã, ỹ2(0) = b̃ we solve these equations to ỹ1(t) = ãe2t, ỹ2(t) = b̃e−t.

Eliminating the time variable t we find the trajectories to be given by ỹ2 = b̃
(
ỹ1
ã

)−1/2
if

ã 6= 0 and ỹ1 = 0 if ã = 0. Moreover, for t → ∞ we have ỹ2 → 0 whereas ỹ1 → ∞ for
ã > 0 and ỹ1 → −∞ for ã < 0. This allows us to sketch the phase portrait given in Fig. 4.1
(right).
Comparing these two phase portraits in old and new coordinates we see that qualitatively
they look similar. However, the one in old coordinates (y1, y2) is a kind of rotated, twisted
and stretched version of the one in new coordinates ỹ1, ỹ2. In particular, in new coordinates
the important straight lines which partition the plane into four sectors coincide with the
two coordinate axes simplifying the picture. These two pictures are called topologically
equivalent meaning that one can be transformed into the other by a continuous set of
transformations without the need to cut or tear the plane apart (imagine the plane to be
made of plasticine, which can be easily distorted). Phase portraits for other types of systems
may not be deformed that way and are then of a different topological type, as we shall see
in the next example.
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