University of London
MTH5123
Differential Equations
Formative Assessment Week 6 - Selected Solutions G. Bianconi

I. Practice Problems

A. Find the solution to the following BVP for the given ODE

$$
x^{2} \frac{d^{2} y}{d x^{2}}-2 y=0, \quad y(1)=0, y^{\prime}(1)=1
$$

Solution: According to the general method of solving the Euler-type equation we introduce the new variable by $x=e^{t}$ and the new function $z(t)$ so that

$$
z(t)=y\left(e^{t}\right), \quad \Rightarrow \quad \frac{d z}{d t}=e^{t} y^{\prime}, \quad \frac{d^{2} z}{d t^{2}}=e^{t} y^{\prime}+e^{2 t} y^{\prime \prime}
$$

From the above we find correspondingly that $y^{\prime}=e^{-t} \dot{z}, y^{\prime \prime}=e^{-2 t}(\ddot{z}-\dot{z})$. Substituting to the Euler-type equation reduces the latter to a homogeneous equation with constant coefficients:

$$
e^{2 t} \cdot e^{-2 t}(\ddot{z}-\dot{z})-2 z=\ddot{z}-\dot{z}-2 z=0 .
$$

The corresponding characteristic equation $\lambda^{2}-\lambda-2=0$ has two roots: $\lambda_{1}=-1$ and $\lambda_{2}=2$ and the general solution is given by:

$$
z(t)=C_{1} e^{-t}+C_{2} e^{2 t}
$$

for arbitrary constants C_{1} and C_{2}. Finally, substituting $t=\ln x$ gives $y_{h}(x)=\frac{C_{1}}{x}+C_{2} x^{2}$. As the initial conditions include the derivative $y^{\prime}(x)$ at $x=1$, thus we first differentiate our general solution and have $y_{h}^{\prime}(x)=-\frac{C_{1}}{x^{2}}+2 C_{2} x$. Using the initial conditions, we have $y(1)=\frac{C_{1}}{1}+C_{2}=0$, and $y^{\prime}(1)=-C_{1}+2 C_{2}=1$. Thus, $C_{1}=-\frac{1}{3}$ and $C_{2}=\frac{1}{3}$, and the solution to this BVP is $y(x)=-\frac{1}{3 x}+\frac{x^{2}}{3}$.
B. Consider the following boundary value problem (BVP)

$$
\frac{1}{\cos x} \frac{d^{2} y}{d x^{2}}+\left(\frac{\sin x}{\cos ^{2} x}\right) \frac{d y}{d x}=0, y(0)=0, y\left(\frac{\pi}{4}\right)=2
$$

Show that the left-hand side of the ODE can be written down in the form $\frac{d}{d x}\left(r(x) \frac{d y}{d x}\right)$ for some function $r(x)$. Use this fact to determine the solution to the above BVP.

Solution: We have

$$
\frac{d}{d x}\left(r(x) \frac{d y}{d x}\right)=r(x) \frac{d^{2} y}{d x^{2}}+r^{\prime}(x) \frac{d y}{d x}
$$

which coincides with the original ODE for $r(x)=\frac{1}{\cos x}$. Therefore, the homogeneous ODE has the form

$$
\frac{d}{d x}\left(\frac{1}{\cos x} \frac{d y}{d x}\right)=0
$$

This can be integrated to find the general solution

$$
\frac{1}{\cos x} \frac{d y}{d x}=C_{1} \quad \Rightarrow \quad y(x)=C_{1} \sin x+C_{2}
$$

for real constants C_{1} and C_{2}. Using the initial conditions, we have $y(0)=C_{1} \sin 0+C_{2}=$ $C_{2}=0$, and $y\left(\frac{\pi}{4}\right)=C_{1} \sin \frac{\pi}{4}+C_{2}=C_{1} \frac{\sqrt{2}}{2}+C_{2}=\frac{\sqrt{2}}{2} C_{1}=2$. Thus, the solution to this BVP is $y(x)=2 \sqrt{2} \sin x$.
C. Find the solution to the following Boundary Value Problem for the second order inhomogeneous differential equation

$$
\frac{d^{2} y}{d x^{2}}=x, y(-1)=0, y(1)=0
$$

Solution: The general solution $y_{h}(x)$ to the linear homogeneous equation $y^{\prime \prime}=0$ is found through the characteristic equations $\lambda^{2}=0$. Thus, there are two identical real roots $\lambda_{1}=\lambda_{2}=\lambda=0$. Accordingly, the general solution to the homogenous ODE is given by

$$
y_{h}(x)=\left(c_{1} x+c_{2}\right) \mathrm{e}^{\lambda x}=c_{1} x+c_{2} .
$$

Now we need to find the solution for the general solution to the inhomogeneous ODE.
Note: 1. we can not directly use the equation for the particular solution (derived by the variation of parameter method) as
$y_{p}(x)=\frac{1}{\left(\lambda_{1}-\lambda_{2}\right) a_{2}}\left\{e^{\lambda_{1} x} \int f(x) e^{-\lambda_{1} x} d x-e^{\lambda_{2} x} \int f(x) e^{-\lambda_{2} x} d x\right\}$, because this equation is obtained under the assumption of two distinct roots (real or complex), $\lambda_{1}-\lambda_{2} \neq 0$.
2. we also can not use the educated guess method as introduced in our lectures, because the right hand side of the ODE is x, which can be written as $x \mathrm{e}^{0 x}$ and 0 is the root of the characteristic equation for the homogenous ODE.

Instead, we can use the variation of parameter method directly. Based on the previous result that $y_{h}(x)=c_{1} x+c_{2}$, we assume the general solution has the form as $y_{g}(x)=c_{1}(x) x+c_{2}(x)$, where $c_{1}(x)$ and $c_{2}(x)$ are unknown and need to be determined. Thus, $y_{g}^{\prime}(x)=c_{1}^{\prime}(x) x+c_{1}(x)+c_{2}^{\prime}(x)$. Assuming $c_{1}^{\prime}(x) x+c_{2}^{\prime}(x)=0$ (!!!! important trick, see lecture notes for details), we have $y_{g}^{\prime}(x)=c_{1}^{\prime}(x) x+c_{1}(x)+c_{2}^{\prime}(x)=c_{1}(x)$ and thus $y_{g}^{\prime \prime}(x)=c_{1}^{\prime}(x)$.

Putting $y_{g}^{\prime \prime}(x)$ back to the inhomogeneous ODE $\frac{d^{2} y}{d x^{2}}=x$, we have $y_{g}^{\prime \prime}(x)=c_{1}^{\prime}(x)=x$. Thus, we obtain $c_{1}(x)=\frac{1}{2} x^{2}+D_{1}$, where D_{1} is an arbitrary real constant. Using $c_{1}^{\prime}(x)=x$ in the assumption $c_{1}^{\prime}(x) x+c_{2}^{\prime}(x)=0$, we have $c_{2}^{\prime}(x)=-x^{2}$ and $c_{2}(x)=-\frac{1}{3} x^{3}+D_{2}$, where D_{2} is an arbitrary real constant. Up so far, we determined $c_{1}(x)$ and $c_{2}(x)$, and the general solution to the inhomogeneous ODE is $y_{g}(x)=c_{1}(x) x+c_{2}(x)=\left(\frac{1}{2} x^{2}+D_{1}\right) x-\frac{1}{3} x^{3}+D_{2}=\frac{1}{6} x^{3}+D_{1} x+D_{2}$.

Finally, using the initial conditions, $y(-1)=-\frac{1}{6}-D_{1}+D_{2}=0$ and $y(1)=\frac{1}{6}+D_{1}+D_{2}=0$, we have $D_{1}=-\frac{1}{6}$ and $D_{2}=0$, which yields the solution to this BVP as

$$
y(x)=\frac{1}{6}\left(x^{3}-x\right) .
$$

D. Find the solution of the following Boundary Value Problem for the second order linear inhomogeneous differential equation,

$$
(x+1) \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=f(x), f(x)=-1, y(0)=0, y^{\prime}(1)=0
$$

Hint: the left-hand side of the ODE can be written down in the form $\frac{d}{d x}\left(r(x) \frac{d y}{d x}\right)$ for some function $r(x)$ and use this fact to determine the general solution of the associated homogeneous ODE $y_{h}(x)$. Based on $y_{h}(x)$, using the variation of parameter method to find the general solution to the inhomogeneous ODE $y_{g}(x)$. Useful formula: $\int \ln z d z=z(\ln z-1)+c$.

Solution: We have

$$
\frac{d}{d x}\left(r(x) \frac{d y}{d x}\right)=r(x) \frac{d^{2} y}{d x^{2}}+r^{\prime}(x) \frac{d y}{d x}
$$

which coincides with the original ODE for $r(x)=x+1$. The homogeneous ODE has therefore the form

$$
\frac{d}{d x}\left((x+1) \frac{d y}{d x}\right)=0
$$

and can be integrated to find the general solution

$$
(x+1) \frac{d y}{d x}=c_{1} \quad \Rightarrow \quad \frac{d y}{d x}=\frac{c_{1}}{x+1} \quad \Rightarrow \quad y_{h}(x)=c_{1} \ln |x+1|+c_{2}
$$

for constants c_{1} and c_{2}. Because we search the solution to our original BVP in the interval of $x \in[0,1]$ according to the BCs , thus we can use $0 \leq x \leq 1$ we can omit the modulus sign and write simply $y_{h}(x)=c_{1} \ln (x+1)+c_{2}$, where $x \in[0,1]$.

Based on the previous result that $y_{h}(x)=c_{1} \ln (x+1)+c_{2}$, we assume the general solution has the form as $y_{g}(x)=c_{1}(x) \ln (x+1)+c_{2}(x)$, where $c_{1}(x)$ and $c_{2}(x)$ are unknown and need to be determined. Thus, $y_{g}^{\prime}(x)=c_{1}^{\prime}(x) \ln (x+1)+\frac{1}{x+1} c_{1}(x)+c_{2}^{\prime}(x)$. Assuming $c_{1}^{\prime}(x) \ln (x+1)+c_{2}^{\prime}(x)=0$ (!!!! important trick, see lecture notes for details), we have $y_{g}^{\prime}(x)=c_{1}^{\prime}(x) \ln (x+1)+\frac{1}{x+1} c_{1}(x)+c_{2}^{\prime}(x)=\frac{1}{x+1} c_{1}(x)$ and thus $y_{g}^{\prime \prime}(x)=\frac{c_{1}^{\prime}(x)-c_{1}(x)}{(1+x)^{2}}$.

Putting $y_{g}(x)=c_{1}(x) \ln (x+1)+c_{2}(x), y_{g}^{\prime}(x)=\frac{1}{x+1} c_{1}(x), y_{g}^{\prime \prime}(x)=\frac{c_{1}^{\prime}(x)(x+1)-c_{1}(x)}{(1+x)^{2}}$ back to the inhomogeneous ODE $(x+1) \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=-1$, we have $c_{1}^{\prime}(x)=-1$. Thus, we obtain $c_{1}(x)=-x+D_{1}$, where D_{1} is an arbitrary real constant. Using $c_{1}^{\prime}(x)=-1$ in the assumption $c_{1}^{\prime}(x) \ln (x+1)+c_{2}^{\prime}(x)=0$, we have $c_{2}^{\prime}(x)=\ln (x+1)$ and $c_{2}(x)=$ $\int \ln (x+1) d x=(x+1)(\ln (x+1)-1)+D_{2}$, where D_{2} is an arbitrary real constant. Up so far, we determined $c_{1}(x)$ and $c_{2}(x)$, and the general solution to the inhomogeneous ODE is $y_{g}(x)=c_{1}(x) \ln (x+1)+c_{2}(x)=\left(-x+D_{1}\right) \ln (x+1)+(x+1)(\ln (x+1)-1)+D_{2}=$ $\left(D_{1}-1\right) \ln (x+1)-(x+1)+D_{2}$. We can rewrite this solution as $y_{g}(x)=D_{3} \ln (x+1)-x+D_{4}$ by denoting $D_{3}=D_{1}-1$ and $D_{4}=D_{2}-1$, where D_{3} and D_{4} are still arbitrary constants.
(Note: If you do not how to obtain $\int \ln z d z=z(\ln z-1)+c$. by the integration by parts method, please check the video https://www.youtube.com/watch?v=jYLoR9kPB2U).

As the initial conditions include the derivative $y^{\prime}(x)$ at $x=0$, thus we first differentiate our general solution and have $y^{\prime}(x)=\frac{D_{3}}{1+x}-1$. Finally, using the initial conditions, $y(0)=$ $D_{3} \ln (0+1)-x+D_{4}=D_{4}=0$ and $y^{\prime}(1)=\frac{D_{3}}{1+1}-1=0$, we have $D_{3}=2$ and $D_{4}=0$, which yields the solution to this BVP as

$$
y(x)=2 \ln (x+1)-x
$$

