
MTH5123 Differential Equations
Formative Assessment Week 6 – Selected Solutions G. Bianconi

I. Practice Problems

A. Find the solution to the following BVP for the given ODE

x2
d2y

dx2
− 2y = 0, y(1) = 0, y′(1) = 1.

Solution: According to the general method of solving the Euler-type equation we intro-
duce the new variable by x = et and the new function z(t) so that

z(t) = y(et), ⇒ dz

dt
= ety′,

d2z

dt2
= ety′ + e2ty′′

From the above we find correspondingly that y′ = e−tż, y′′ = e−2t(z̈ − ż). Substituting
to the Euler-type equation reduces the latter to a homogeneous equation with constant
coefficients:

e2t · e−2t(z̈ − ż)− 2z = z̈ − ż − 2z = 0.

The corresponding characteristic equation λ2 − λ − 2 = 0 has two roots: λ1 = −1 and
λ2 = 2 and the general solution is given by:

z(t) = C1e
−t + C2e

2t,

for arbitrary constants C1 and C2. Finally, substituting t = lnx gives yh(x) = C1

x
+C2x

2.
As the initial conditions include the derivative y′(x) at x = 1, thus we first differentiate
our general solution and have y′h(x) = −C1

x2
+ 2C2x. Using the initial conditions, we have

y(1) = C1

1
+ C2 = 0, and y′(1) = −C1 + 2C2 = 1. Thus, C1 = −1

3
and C2 = 1

3
, and the

solution to this BVP is y(x) = − 1
3x

+ x2

3
.

B. Consider the following boundary value problem (BVP)

1

cosx

d2y

dx2
+

(
sinx

cos2 x

)
dy

dx
= 0 , y(0) = 0 , y

(π
4

)
= 2
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Show that the left-hand side of the ODE can be written down in the form d
dx

(
r(x) dy

dx

)
for

some function r(x). Use this fact to determine the solution to the above BVP.

Solution: We have
d

dx

(
r(x)

dy

dx

)
= r(x)

d2y

dx2
+ r′(x)

dy

dx
,

which coincides with the original ODE for r(x) = 1
cosx

. Therefore, the homogeneous ODE has
the form

d

dx

(
1

cosx

dy

dx

)
= 0 .

This can be integrated to find the general solution

1

cosx

dy

dx
= C1 ⇒ y(x) = C1 sinx+ C2

for real constants C1 and C2. Using the initial conditions, we have y(0) = C1 sin 0 + C2 =

C2 = 0, and y
(
π
4

)
= C1 sin π

4
+ C2 = C1

√
2
2

+ C2 =
√
2
2
C1 = 2. Thus, the solution to this

BVP is y(x) = 2
√

2 sinx.

C. Find the solution to the following Boundary Value Problem for the second order inhomo-
geneous differential equation

d2y

dx2
= x , y(−1) = 0 , y(1) = 0.

Solution: The general solution yh(x) to the linear homogeneous equation y′′ = 0 is
found through the characteristic equations λ2 = 0. Thus, there are two identical real roots
λ1 = λ2 = λ = 0. Accordingly, the general solution to the homogenous ODE is given by

yh(x) = (c1x+ c2)e
λx = c1x+ c2 .

Now we need to find the solution for the general solution to the inhomoge-
neous ODE.
Note: 1. we can not directly use the equation for the particular solution (derived by the varia-
tion of parameter method) as
yp(x) = 1

(λ1−λ2)a2

{
eλ1x

∫
f(x)e−λ1xdx− eλ2x

∫
f(x)e−λ2xdx

}
, because this equation is ob-

tained under the assumption of two distinct roots (real or complex), λ1 − λ2 6= 0.
2. we also can not use the educated guess method as introduced in our lectures, because
the right hand side of the ODE is x, which can be written as xe0x and 0 is the root of the
characteristic equation for the homogenous ODE.

Instead, we can use the variation of parameter method directly. Based on
the previous result that yh(x) = c1x + c2, we assume the general solution has the form as
yg(x) = c1(x)x+c2(x), where c1(x) and c2(x) are unknown and need to be determined. Thus,
y′g(x) = c′1(x)x+c1(x)+c′2(x). Assuming c′1(x)x+c′2(x) = 0 (!!!! important trick, see lecture
notes for details), we have y′g(x) = c′1(x)x + c1(x) + c′2(x) = c1(x) and thus y′′g (x) = c′1(x).
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Putting y′′g (x) back to the inhomogeneous ODE d2y
dx2

= x, we have y′′g (x) = c′1(x) = x. Thus,
we obtain c1(x) = 1

2
x2+D1, where D1 is an arbitrary real constant. Using c′1(x) = x in the as-

sumption c′1(x)x+c′2(x) = 0, we have c′2(x) = −x2 and c2(x) = −1
3
x3+D2, where D2 is an ar-

bitrary real constant. Up so far, we determined c1(x) and c2(x), and the general solution to the
inhomogeneous ODE is yg(x) = c1(x)x+c2(x) = (1

2
x2+D1)x− 1

3
x3+D2 = 1

6
x3+D1x+D2.

Finally, using the initial conditions, y(−1) = −1
6
−D1 +D2 = 0 and y(1) = 1

6
+D1 +D2 = 0,

we have D1 = −1
6

and D2 = 0, which yields the solution to this BVP as

y(x) =
1

6
(x3 − x) .

D. Find the solution of the following Boundary Value Problem for the second order linear
inhomogeneous differential equation,

(x+ 1)
d2y

dx2
+
dy

dx
= f(x) , f(x) = −1, y(0) = 0 , y′(1) = 0.

Hint: the left-hand side of the ODE can be written down in the form d
dx

(
r(x) dy

dx

)
for some

function r(x) and use this fact to determine the general solution of the associated homo-
geneous ODE yh(x). Based on yh(x), using the variation of parameter method to find the
general solution to the inhomogeneous ODE yg(x). Useful formula:

∫
ln zdz = z(lnz−1) + c.

Solution: We have
d

dx

(
r(x)

dy

dx

)
= r(x)

d2y

dx2
+ r′(x)

dy

dx
.

which coincides with the original ODE for r(x) = x+1. The homogeneous ODE has therefore
the form

d

dx

(
(x+ 1)

dy

dx

)
= 0

and can be integrated to find the general solution

(x+ 1)
dy

dx
= c1 ⇒ dy

dx
=

c1
x+ 1

⇒ yh(x) = c1 ln |x+ 1|+ c2

for constants c1 and c2. Because we search the solution to our original BVP in the interval of
x ∈ [0, 1] according to the BCs, thus we can use 0 ≤ x ≤ 1 we can omit the modulus sign
and write simply yh(x) = c1 ln (x+ 1) + c2, where x ∈ [0, 1].

Based on the previous result that yh(x) = c1 ln (x+ 1) + c2, we assume the general solu-
tion has the form as yg(x) = c1(x) ln (x+ 1) + c2(x), where c1(x) and c2(x) are unknown
and need to be determined. Thus, y′g(x) = c′1(x) ln (x+ 1) + 1

x+1
c1(x) + c′2(x). Assuming

c′1(x) ln (x+ 1) + c′2(x) = 0 (!!!! important trick, see lecture notes for details), we have

y′g(x) = c′1(x) ln (x+ 1) + 1
x+1

c1(x) + c′2(x) = 1
x+1

c1(x) and thus y′′g (x) =
c′1(x)−c1(x)

(1+x)2
.
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Putting yg(x) = c1(x) ln (x+ 1) + c2(x),y′g(x) = 1
x+1

c1(x), y′′g (x) =
c′1(x)(x+1)−c1(x)

(1+x)2
back

to the inhomogeneous ODE (x + 1) d
2y
dx2

+ dy
dx

= −1, we have c′1(x) = −1. Thus, we ob-
tain c1(x) = −x + D1, where D1 is an arbitrary real constant. Using c′1(x) = −1 in
the assumption c′1(x) ln(x + 1) + c′2(x) = 0, we have c′2(x) = ln(x + 1) and c2(x) =∫

ln(x+ 1)dx = (x+ 1)(ln(x+ 1)− 1) +D2, where D2 is an arbitrary real constant. Up so
far, we determined c1(x) and c2(x), and the general solution to the inhomogeneous ODE is
yg(x) = c1(x) ln (x+ 1) + c2(x) = (−x + D1) ln(x + 1) + (x + 1)(ln(x + 1) − 1) + D2 =
(D1−1) ln(x+1)−(x+1)+D2. We can rewrite this solution as yg(x) = D3 ln(x+1)−x+D4

by denoting D3 = D1 − 1 and D4 = D2 − 1, where D3 and D4 are still arbitrary constants.

( Note: If you do not how to obtain
∫

ln zdz = z(lnz − 1) + c. by the integration by parts
method, please check the video https://www.youtube.com/watch?v=jYLoR9kPB2U ).

As the initial conditions include the derivative y′(x) at x = 0, thus we first differentiate
our general solution and have y′(x) = D3

1+x
− 1. Finally, using the initial conditions, y(0) =

D3 ln(0 + 1) − x + D4 = D4 = 0 and y′(1) = D3

1+1
− 1 = 0 , we have D3 = 2 and D4 = 0,

which yields the solution to this BVP as

y(x) = 2 ln(x+ 1)− x
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https://www.youtube.com/watch?v=jYLoR9kPB2U

