University of London

MTH5123

Differential Equations
Formative Assessment Week 4 - Selected Solutions G. Bianconi

I. Practice Problems

A. Find the general solutions of the following linear homogeneous differential equations of second order:

1) $y^{\prime \prime}+y^{\prime}-12 y=0$: The characteristic equation is $\lambda^{2}+\lambda-12=0$ which has two real roots $\lambda_{1}=3, \lambda_{2}=-4$, hence the general solution is $y_{h}=C_{1} e^{3 x}+C_{2} e^{-4 x}$.
2) $6 y^{\prime \prime}+5 y^{\prime}-6 y=0$: The characteristic equation is $6 \lambda^{2}+5 \lambda-6=0$ which has two real roots $\lambda_{1}=2 / 3, \lambda_{2}=-3 / 2$, hence the general solution is $y_{h}=C_{1} e^{\frac{2}{3} x}+C_{2} e^{-\frac{3}{2} x}$.
3) $y^{\prime \prime}+2 y^{\prime}+17 y=0$: The characteristic equation is $\lambda^{2}+2 \lambda+17=0$ which has two complex conjugate roots $\lambda_{1}=-1+4 i, \lambda_{2}=-1-4 i$, hence the general solution can be written as $y_{h}=e^{-x}\left(C_{1} e^{4 i x}+C_{2} e^{-4 i x}\right)$ where $C_{1,2}$ are two complex constants, or equivalently as $y_{h}=e^{-x}(A \cos (4 x)+B \sin (4 x))$ where A, B are two real constants.
4) $y^{\prime \prime}+2 y^{\prime}+3 y=0$: The characteristic equation is $\lambda^{2}+2 \lambda+3=0$ which has two complex conjugate roots $\lambda_{1}=-1+i \sqrt{2}, \lambda_{2}=-1-i \sqrt{2}$, hence the general solution can be written as $y_{h}=e^{-x}\left(C_{1} e^{i \sqrt{2} x}+C_{2} e^{-i \sqrt{2} x}\right)$ where $C_{1,2}$ are two complex constants or equivalently as $y_{h}=e^{-x}(A \cos (\sqrt{2} x)+B \sin (\sqrt{2} x))$ where A, B are two real constants.
5) $16 y^{\prime \prime}+8 y^{\prime}+y=0$: The characteristic equation is $16 \lambda^{2}+8 \lambda+1=0$ which has a real root $\lambda=-1 / 4$ of multiplicity two, hence the general solution can be written as $y_{h}=e^{-x / 4}\left(C_{1}+C_{2} x\right)$.
B. Solve the following initial value problems:
6) $10 y^{\prime \prime}-y^{\prime}-3 y=0, \quad y(0)=1, y^{\prime}(0)=0$: The characteristic equation is $10 \lambda^{2}-\lambda-3=$ 0 which has two real roots $\lambda_{1}=3 / 5, \lambda_{2}=-1 / 2$, hence the general solution is $y_{h}=C_{1} e^{\frac{3}{5} x}+C_{2} e^{-\frac{1}{2} x}$.
Taking the derivative: $y_{h}^{\prime}=\frac{3}{5} C_{1} e^{\frac{3}{5} x}-\frac{1}{2} C_{2} e^{-\frac{1}{2} x}$. We then have $\quad y(0)=C_{1}+C_{2}=1$, $y^{\prime}(0)=\frac{3}{5} C_{1}-\frac{1}{2} C_{2}=0$. One can solve it by various methods. The most general method (although perhaps not the easiest) is to rewrite the system of linear equations
in the matrix form as $A \mathbf{c}=\mathbf{b}$ where

$$
A=\left(\begin{array}{cc}
1 & 1 \\
\frac{3}{5} & -\frac{1}{2}
\end{array}\right), \quad \mathbf{c}=\binom{C_{1}}{C_{2}}, \quad \mathbf{b}=\binom{1}{0}
$$

and solve it as

$$
\mathbf{c}=A^{-1} \mathbf{b}=\frac{1}{-\frac{1}{2}-\frac{3}{5}}\left(\begin{array}{cc}
-\frac{1}{2} & -1 \\
-\frac{3}{5} & 1
\end{array}\right)\binom{1}{0}=\binom{\frac{5}{11}}{\frac{6}{11}}
$$

so that $C_{1}=\frac{5}{11}, C_{2}=\frac{6}{11}$. Finally, the solution to the initial value problem is given by $y=\frac{5}{11} e^{\frac{3}{5} x}+\frac{6}{11} e^{-\frac{1}{2} x}$.
2) $y^{\prime \prime}-2 y^{\prime}-3 y=0, \quad y(0)=2, y^{\prime}(0)=-3$: The characteristic equation is $\lambda^{2}-$ $2 \lambda-3=0$ which has two real roots $\lambda_{1}=3, \lambda_{2}=-1$, hence the general solution is $y_{h}=C_{1} e^{3 x}+C_{2} e^{-x}$. Taking the derivative: $y_{h}^{\prime}=3 C_{1} e^{3 x}-C_{2} e^{-x}$. We then have $y(0)=C_{1}+C_{2}=2, y^{\prime}(0)=3 C_{1}-C_{2}=-3$. One can solve these equations by various methods to find $C_{1}=-\frac{1}{4}, C_{2}=\frac{9}{4}$. Finally, the solution to the initial value problem is given by $y=-\frac{1}{4} e^{3 x}+\frac{9}{4} e^{-x}$.
3) $y^{\prime \prime}-4 y^{\prime}-5 y=0, \quad y(0)=-1, y^{\prime}(0)=-1$: The characteristic equation is $\lambda^{2}-$ $4 \lambda-5=0$ which has two real roots $\lambda_{1}=5, \lambda_{2}=-1$, hence the general solution is $y_{h}=C_{1} e^{5 x}+C_{2} e^{-x}$. Taking the derivative: $y_{h}^{\prime}=5 C_{1} e^{5 x}-C_{2} e^{-x}$. We then have $y(0)=C_{1}+C_{2}=-1, y^{\prime}(0)=5 C_{1}-C_{2}=-1$. One can solve these equations by various methods to find $C_{1}=-\frac{1}{3}, C_{2}=-\frac{2}{3}$. Finally, the solution to the initial value problem is given by $y=-\frac{1}{3} e^{5 x}-\frac{2}{3} e^{-x}$.
4) $y^{\prime \prime}-4 y^{\prime}+13 y=0, \quad y(0)=4, y^{\prime}(0)=0$ The characteristic equation is $\lambda^{2}-$ $4 \lambda+13=0$ which has two complex conjugate roots $\lambda_{1}=2+3 i, \lambda_{2}=2-3 i$, hence the general solution is $y_{h}=C_{1} e^{(2+3 i) x}+C_{2} e^{(2-3 i) x}$ or equivalently $y_{h}=$ $e^{2 x}(A \cos (3 x)+B \sin (3 x))$ where A, B are two real constants. Taking the derivative:

$$
\begin{gathered}
y_{h}^{\prime}=2 e^{2 x}(A \cos (3 x)+B \sin (3 x))+e^{2 x}(-3 A \sin (3 x)+3 B \cos (3 x)) \\
=e^{2 x}((2 A+3 B) \cos (3 x)+(2 B-3 A) \sin (3 x))
\end{gathered}
$$

Hence $y(0)=A=4$ and $y^{\prime}(0)=2 A+3 B=0$, so that $A=4, B=-8 / 3$ and $y=e^{2 x}\left(4 \cos (3 x)-\frac{8}{3} \sin (3 x)\right)$.

C. Assign to each of the following linear homogeneous differential equations

1) $2 y^{\prime \prime}-8 y^{\prime}+8 y=0$
2) $y^{\prime \prime}+y^{\prime}-2 y=0$
3) $y^{\prime \prime}+2 y^{\prime}+2 y=0$
a correct solution from the list:
i) $y=e^{-x}(2 \cos x-\sqrt{2} \sin x)$
ii) $y=e^{x}+\frac{1}{7} e^{-2 x}$
iii) $y=e^{2 x}(x+1)$.

Solution:

1) $2 y^{\prime \prime}-8 y^{\prime}+8 y=0$ corresponds to $y=e^{2 x}(x+1)$ (characteristic equation is $2 \lambda^{2}-8 \lambda+8=$
$2(\lambda-2)^{2}=0$ with a real root of multiplicity two: $\left.\lambda_{1}=\lambda_{2}=2\right)$.
2) $y^{\prime \prime}+y^{\prime}-2 y=0$ corresponds to $y=e^{x}+\frac{1}{7} e^{-2 x}$ (characteristic equation is $\lambda^{2}+\lambda-2=0$ with two real roots $\lambda_{1}=1, \lambda_{2}=-2$).
3) $y^{\prime \prime}+2 y^{\prime}+2 y=0$ corresponds to $y=e^{-x}(2 \cos x-\sqrt{2} \sin x)$ (characteristic equation is $\lambda^{2}+2 \lambda+2=0$ with a pair of complex-conjugate roots $\left.\lambda_{1}=-1+i, \lambda_{2}=-1-i\right)$.
D. Determine the general solution for the homogeneous linear differential equation

$$
y^{\prime \prime}-2 y^{\prime}+y=0 .
$$

Fix the constants of integration by the initial condition $y(2)=1, y^{\prime}(2)=-2$ and write down the explicit form of the corresponding solution to the initial value problem.

Solution: The characteristic equation is $\lambda^{2}-2 \lambda+1=0$. It has a single root $\lambda=1$ of multiplicity two. Hence the general solution is given by $y_{h}=\left(C_{1} x+C_{2}\right) e^{x}$, which gives after differentiation $y_{h}^{\prime}=\left(C_{1} x+C_{1}+C_{2}\right) e^{x}$. The initial conditions give $y(2)=\left(2 C_{1}+C_{2}\right) e^{2}=$ 1, $y^{\prime}(2)=\left(3 C_{1}+C_{2}\right) e^{2}=-2$ The easiest way to solve this system is to subtract the first equation from the second one, which gives $C_{1} e^{2}=-3$ so that $C_{1}=-3 / e^{2}$ and from the first equation $C_{2} e^{2}=1-2 C_{1} e^{2}=1+6=7$, hence $C_{2}=7 / e^{2}$. The explicit solution to the initial value problem is $y=(-3 x+7) e^{x-2}$.

III. More Practice with 2nd Order Linear ODEs

A. In each exercise below, solve the initial value problem and determine the value of α (if any) so that the solution approaches zero as $t \longrightarrow \infty$. Sketch/Graph the solution curve.

1) $\ddot{y}+5 \dot{y}+6 y=0, y(0)=\alpha, \dot{y}(0)=3$: Any α will work, since $\lambda=-2$, -3 . One possible choice for α is $\alpha=2$, which gives $y(t)=9 e^{-2 t}-7 e^{-3 t}$.
2) $\ddot{y}+(2 \alpha-1) \dot{y}+\alpha(\alpha-1) y=0: y(t) \longrightarrow 0$ as long as $\alpha>1$.
B. Study the equation $a \ddot{y}+b \dot{y}+c y=f$, where a, b, c and f are all constants. The equilibrium solution is $y_{e q}=f / c$ and the differential equation solved by $Y=y-y_{e q}$ (the deviation from equilibrium) is given by $a \ddot{Y}+b \dot{Y}+c Y=0$.
