. University of London

MTH5123 Differential Equations
Lecture Notes
Week 2

School of Mathematical Sciences
Queen Mary University of London
2. Consider equations of the type

$$
\begin{equation*}
y^{\prime}=F\left(\frac{y}{x}\right) \tag{1.8}
\end{equation*}
$$

Such ODEs do not change if we rescale $x \rightarrow k x$ and $y \rightarrow k y$ for any real constant factor $k \neq 0$, hence they are known under the name scale-invariant first order ODEs. To reduce them to separable equations one introduces a new function $z(x)=y(x) / x$ which implies $y(x)=x z(x)$. Differentiating this equation gives $y^{\prime}=z(x)+x z^{\prime}(x)$, and (1.8) can be rewritten in the form $z+x z^{\prime}=F(z)$ or equivalently

$$
\begin{equation*}
z^{\prime}=\frac{1}{x}[F(z)-z] \tag{1.9}
\end{equation*}
$$

which is indeed separable.

Example:

Solve the equation

$$
x y^{\prime}=y-x e^{y / x} .
$$

Solution:

After dividing both sides by x we see that the equation is of the form (1.8) with the right-hand side $F(z)=z-e^{z}$. Therefore it is equivalent to the separable equation

$$
z^{\prime}=-\frac{1}{x} e^{z} .
$$

Solving it by standard means leads to $e^{-z}=\ln |x|+C$ or

$$
z=-\ln (\ln |x|+C) .
$$

Finally the general solution to the original ODE is

$$
y(x)=-x \ln (\ln |x|+C) .
$$

1.3 First order linear ODEs

This class of equations is given by

$$
\begin{equation*}
y^{\prime}=A(x) y+B(x), \tag{1.10}
\end{equation*}
$$

where the two functions $A(x) \neq 0$ and $B(x)$ are known. These equations are called linear (in y), because y and its derivative y^{\prime} occur only to the first power, they are not multiplied together, nor do they appear as the argument of a function (such as $\sin y, \exp (y)$, etc.). If $B(x)=0$, the equation is called homogeneous, if $B(x) \neq 0$ it is called inhomogeneous.

Example:

$y^{\prime}=\sin (x) y \quad$ homogeneous
$y^{\prime}=e^{x} y+x \quad$ inhomogeneous
$y^{\prime}=1-y^{2}+x \quad$ nonlinear

The method of solution of such equations proceeds in two steps:
Step 1: Solve the homogeneous equation $y^{\prime}=A(x) y$, which is separable. The general solution is found to be

$$
\begin{equation*}
\int \frac{d y}{y}=\int A(x) d x+C \Rightarrow \ln |y|=\int A(x) d x+C \tag{1.11}
\end{equation*}
$$

and finally

$$
\begin{equation*}
y=D e^{\int A(x) d x} \tag{1.12}
\end{equation*}
$$

where $D \in \mathbb{R}$ is an arbitrary real constant (also called a free parameter).
Step 2 is known as the variation of parameter method. It amounts to looking for the solution of (1.10) in the form

$$
\begin{equation*}
y=D(x) e^{\int A(x) d x} \tag{1.13}
\end{equation*}
$$

where $D(x)$ is now an unknown function to be determined by substituting (1.13) to (1.10). This gives

$$
y^{\prime}=D^{\prime}(x) e^{\int A(x) d x}+A(x) D(x) e^{\int A(x) d x}=A(x) D(x) e^{\int A(x) d x}+B(x)
$$

which after cancelling equal terms on both sides is equivalent to

$$
\begin{equation*}
D^{\prime}(x) e^{\int A(x) d x}=B(x) \tag{1.14}
\end{equation*}
$$

This allows us to write $D^{\prime}(x)=e^{-\int A(x) d x} B(x)$ and to recover $D(x)$ by simple integration

$$
\begin{equation*}
D(x)=\int e^{-\int A(x) d x} B(x) d x+C \tag{1.15}
\end{equation*}
$$

finally yielding the general solution of (1.10) in the form

$$
\begin{equation*}
y(x)=e^{\int A(x) d x}\left(\int e^{-\int A(x) d x} B(x) d x+C\right) \quad \forall C \in \mathbb{R} \tag{1.16}
\end{equation*}
$$

Note: An alternative method to derive the same result is the integrating factor method, as you have seen in Calculus 2.

Example:

Solve the equation

$$
y^{\prime}+2 x y=x .
$$

Solution:

First we solve $y^{\prime}+2 x y=0$ by separation of variables obtaining $y=D e^{-x^{2}}$, where D is an arbitrary constant. Now we assume $D=D(x)$ and substitute $y=D(x) e^{-x^{2}}$ to the full non-homogeneous equation:

$$
y^{\prime}=D^{\prime}(x) e^{-x^{2}}+D(x)(-2 x) e^{-x^{2}}
$$

Thus, we have

$$
D^{\prime}(x) e^{-x^{2}}+D(x)(-2 x) e^{-x^{2}}+2 x D(x) e^{-x^{2}}=x
$$

which implies $D^{\prime}(x)=x e^{x^{2}}$, hence $D(x)=\int x e^{x^{2}} d x=\frac{1}{2} e^{x^{2}}+C$. Finally, the general solution to the original ODE is given by

$$
y(x)=\left(\frac{1}{2} e^{x^{2}}+C\right) e^{-x^{2}}=\frac{1}{2}+C e^{-x^{2}}
$$

1.4 Exact first order ODEs.

Exact ODEs are of the form

$$
\begin{equation*}
P(x, y)+Q(x, y) \frac{d y}{d x}=0 . \tag{1.17}
\end{equation*}
$$

We would like to find solutions of this class of ODEs in implicit form $F(x, y)=C, y=y(x)$, for a constant C. Using the chain rule we observe that

$$
\begin{equation*}
\frac{d F(x, y(x))}{d x}=\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y} \frac{d y}{d x}=0 \tag{1.18}
\end{equation*}
$$

which coincides with (1.17) if we define

$$
\begin{equation*}
P(x, y)=\frac{\partial F}{\partial x}, \quad Q(x, y)=\frac{\partial F}{\partial y} . \tag{1.19}
\end{equation*}
$$

Using these definitions we have

$$
\begin{equation*}
\frac{\partial}{\partial y} P(x, y)=\frac{\partial^{2} F}{\partial y \partial x}, \quad \frac{\partial}{\partial x} Q(x, y)=\frac{\partial^{2} F}{\partial x \partial y} . \tag{1.20}
\end{equation*}
$$

If F is twice differentiable in both x and y with continuous second order partial derivatives, we have (according to the mixed derivatives theorem in Calculus 2)

$$
\frac{\partial^{2} F}{\partial y \partial x}=\frac{\partial^{2} F}{\partial x \partial y}
$$

and we conclude that the equation

$$
\begin{equation*}
\frac{\partial}{\partial y} P(x, y)=\frac{\partial}{\partial x} Q(x, y) \tag{1.21}
\end{equation*}
$$

must hold. Equation (1.21) is the crucial condition for (1.17) to be exact. For any exact ODE the general solution can always be written in the implicit form $F(x, y)=C$.
To determine the form of the function $F(x, y)$, one may start with the first equation in (1.19) by integrating it over the variable x to

$$
\begin{equation*}
P(x, y)=\frac{\partial F}{\partial x} \quad \Rightarrow F(x, y)=\int P(x, y) d x+g(y) \tag{1.22}
\end{equation*}
$$

where the function $g(y)$ is an arbitrary function of the variable y, yet to be determined. To find $g(y)$ we use the second equation in (1.19)

$$
\begin{equation*}
Q(x, y)=\frac{\partial F}{\partial y}=\frac{\partial}{\partial y} \int P(x, y) d x+g^{\prime}(y) \tag{1.23}
\end{equation*}
$$

which gives

$$
\begin{equation*}
g^{\prime}(y)=Q(x, y)-\frac{\partial}{\partial y} \int P(x, y) d x \tag{1.24}
\end{equation*}
$$

The missing function $g(y)$ can then be found by straightforward integration of this equation.

Example:

Show that the equation

$$
3 x^{2}+y-\left(3 y^{2}-x\right) \frac{d y}{d x}=0
$$

is exact and find its general solution in implicit form.

Solution:

We identify $P(x, y)=3 x^{2}+y$, hence $\frac{\partial P}{\partial y}=1$. Similarly, $Q(x, y)=-\left(3 y^{2}-x\right)$, hence $\frac{\partial Q}{\partial x}=1$. Since $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ the equation is exact.
We find its implicit solution in the form $F(x, y)=C$ by

$$
F(x, y)=\int P(x, y) d x+g(y)=\int\left(3 x^{2}+y\right) d x+g(y)=x^{3}+x y+g(y)
$$

where $g(y)$ is yet undetermined. We further have

$$
\frac{\partial F}{\partial y}=x+g^{\prime}(y)=Q(x, y)=-\left(3 y^{2}-x\right), \quad \Rightarrow g^{\prime}(y)=-3 y^{2}
$$

This allows us to find

$$
g(y)=\int\left(-3 y^{2}\right) d y=-y^{3}+C_{1}
$$

where C_{1} is an arbitrary constant. There is no need to keep C_{1}, as it can always be absorbed into the constant C. The general solution of the original equation in implicit form is obtained as

$$
F(x, y)=x^{3}+x y-y^{3}=C .
$$

Note:

The same ODE can be presented in a different form, for example:

$$
\frac{d y}{d x}=\frac{3 x^{2}+y}{3 y^{2}-x}
$$

One needs to recognize the equivalence of this equation to the form of an exact ODE by then applying the same procedure for a solution.

