You may refer without proof to results from the course (theorems, examples, etc.).

Q1

(i) Show that if events A_1, A_2, \ldots are independent then

$$\mathbb{P}\left(\bigcap_{n=1}^{\infty} A_n\right) = \prod_{n=1}^{\infty} \mathbb{P}(A_n).$$

(ii) Show that for any random variable ξ there exists a numerical sequence c_1, c_2, \ldots such that, as $n \to \infty$,

$$c_n \xi \xrightarrow{\mathbb{P}} 0.$$

- (iii) Prove that for any sequence of random variables ξ_1, ξ_2, \ldots there exist constants c_1, c_2, \ldots such that the series $\sum_{n=1}^{\infty} c_n \xi_n$ converges almost surely.
- (iv) Let ξ_1, ξ_2, \ldots be i.i.d. with some probability mass function p(i) on $\{0, 1, \ldots, 9\}$, and let η_1, η_2, \ldots be i.i.d., with some probability mass function q(i) on $\{0, 1, \ldots, 9\}$.

Consider the random variables

$$X = \sum_{n=1}^{\infty} \frac{\xi_n}{10^n}, \quad Y = \sum_{n=1}^{\infty} \frac{\eta_n}{10^n}.$$

Let μ be the probability distribution of X, and ν be the probability distribution of Y.

Show that μ and ν are not absolutely continuous relative to one another (i.e. *mutually singular*), unless $p(i) = q(i), i \in \{0, 1, \dots, 9\}$.

Q2

- (i) Give example of two random processes $(X(t), t \ge 0)$ and $(Y(t), t \ge 0)$ which have different distributions but satisfy X(t) = Y(t) a.s. for each fixed t.
- (ii) Let X, X_1, X_2, \ldots be discrete random variables with values in \mathbb{Z} . Show that the weak convergence $X_n \Rightarrow X$ holds if and only if $\lim_{n\to\infty} \mathbb{P}(X_n = k) = \mathbb{P}(X = k), k \in \mathbb{Z}$.
- (iii) Suppose X_n is a [0, 1]-valued random variable with density

$$f_n(x) = 1 - \cos(2\pi nx), \ x \in [0, 1].$$

Determine a weak limit of the X_n 's as $n \to \infty$. Do the densities f_n converge pointwise?

(iv) Let X_1, X_2, \ldots be i.i.d. random variables with density f, and let g be another density function. The likelihood ratio for a sample of size n is defined as

$$L_n = \frac{\prod_{i=0}^n g(X_i)}{\prod_{i=0}^n f(X_i)}.$$

Show that L_1, L_2, \ldots is a martingale (adapted to the natural filtration generated by X_1, X_2, \ldots).

Q3 Let $(B(t), t \ge 0)$ be the Brownian motion (BM) with the natural filtration $(\mathcal{F}_t^B, t \ge 0)$. Consider

$$N := \{t \ge 0 : B(t) = 0\},\$$

the set of zeroes of the BM.

[In this question, if the probability of event is not specified, it is meant that the event occurs with probability one. Furthermore, you may rely on the fact that the process

$$W(t) := B(t + \tau) - B(\tau), \ t \ge 0,$$

is again a BM, for every finite stopping time τ adapted to $(\mathcal{F}_t^B, t \ge 0)$.]

- (i) Is N a Borel set? Is it closed? Justify your answer.
- (ii) Show that N has zero Lebesgue measure. [Hint: use Fubini's theorem.]
- (iii) For $x \neq 0$, let $\tau_x = \inf\{t : B(t) > x\}$. Show that $\tau_x < \infty$.
- (iv) Show that N has infinite cardinality.
- (v) Argue that N has points isolated from the left, and points isolated from the right.
- (vi) Verify that the process $(tB(1/t), t \ge 0)$ is a BM and use this fact to show that t = 0 is not an isolated point of N.
- (vii) Let $D_t := \inf([t, \infty) \cap N)$. Show that

$$N_D := \bigcup_{t \notin N} \{D_t\}$$

(union of one-point sets) is a countable set, that $N_D \subset N$, and that each $t \in N_D$ is not an isolated point of N.

- (viii) Prove that N has no isolated points.
- (ix) The Laplace transform of τ_x in part (iii) is

$$\mathbb{E}e^{-\lambda\tau_x} = e^{-|x|\sqrt{2\lambda}}.$$

By using this and conditioning on B(1), find the Laplace transform and the density of the random variable of $D_1 - 1$.

(x) Derive from (ix) that 'the last zero' $\max(N \cap [0, 1])$ follows the arcsine distribution with density function

$$f(t) = \frac{1}{\pi\sqrt{t(1-t)}}, \ t \in [0,1].$$