Picard-Lindelöf Theorem.

Let \mathcal{D} be the rectangular domain in the $x y$ plane defined as $\mathcal{D}=(|x-a| \leq A,|y-b| \leq B)$ and suppose $f(x, y)$ is a function defined on \mathcal{D} which satisfies the following conditions:
(i) $f(x, y)$ is continuous and therefore bounded in \mathcal{D}
(ii) the parameters A and B satisfy $A \leq B / M$ where $M=\max _{\mathcal{D}}|f(x, y)|$
(iii) $\left|\frac{\partial f}{\partial y}\right|$ is bounded in \mathcal{D}.

Then there exists a unique solution on \mathcal{D} to the initial value problem

$$
\frac{d y}{d x}=f(x, y), \quad y(a)=b
$$

Exact first-order ODEs:

If the equation

$$
P(x, y)+Q(x, y) \frac{d y}{d x}=0
$$

is exact, its solution can be found in the form $F(x, y)=$ Const. where

$$
P=\frac{\partial F}{\partial x} \quad \text { and } \quad Q=\frac{\partial F}{\partial y}
$$

Some derivatives

In the table below, a, b and c are constants.

$$
\begin{array}{cc}
\sin x & \cos x \\
\cos x & -\sin x \\
\tan x & 1 / \cos ^{2} x \\
\sinh x & \cosh x \\
\cosh x & \sinh x \\
\tanh x & 1 / \cosh ^{2} x \\
\log x & \frac{1}{x}
\end{array}
$$

