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Question 1.

(a) Find the general solution of the homogeneous ODE

4y′′ + 4y′ + y = 0.

[6]

(b) Find the general solution of the non-homogeneous ODE

4y′′ + 4y′ + y = cos
(x
2

)
+ sin

(x
2

)
.

[12]

(c) Solve the following initial value problem

y′ =
y

x
+ x , y(1) = 2 .

[7]

Question 2.

(a) (i) Find all functions f(y) for which the following differential equation be-
comes exact:

dy

dx
= − x3 + f(y)

6xy2 + 5y4
, (1)

[5]

(ii) Suppose, f(y) is chosen so that the equation (1) is exact and f(1) = 0.
Solve (1) in implicit form. [10]

(b) Consider the initial value problem (IVP)

dy

dx
= 2x

√
|y − 1| ≡

{
x
√
y − 1, y > 1

x
√
1− y, y < 1

, y(0) = b .

where b is a real parameter.
Find the value of the parameter b such that the corresponding IVP may have
more than one solution and explain your choice. Confirm your choice by
giving at least two different solutions of the IVP in the domain y > 1 for such
a value of the parameter. [6]

(c) Consider the boundary value problem (BVP)

y′′ + b2y = 5 , y(0) = 1, y′
(π
2

)
= 1 .

where b > 0 is a real parameter. Find all positive values of the parameter
b such that the corresponding BVP may have either no solution or infinitely
many solutions. [4]
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Question 3.

Write down the solution to the following Boundary Value Problem (BVP) for the
second order non-homogeneous differential equation

1

(x+ 1)

d2y

dx2
− 1

(x+ 1)2
dy

dx
= f(x), y(0) = 0, y′(1) = 0

by using the Green’s function method along the following lines:

(a) Show that the left-hand side of the ODE can be written down in the form
d
dx

(
r(x) dy

dx

)
for some function r(x) and use this fact to determine the general

solution of the associated homogeneous ODE.

[4]

(b) Formulate the corresponding left-end and right-end initial value problems and
use their solutions to construct the Green’s function G(x, s).

[14]

(c) Write down the solution to the BVP in terms of G(x, s) and f(x) and use it to
find the explicit form of the solution for f(x) = 2x.

[7]
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Question 4.

(a) Consider a system of two linear first-order ODE:

ẋ = 2x− 4y, ẏ = ax− 6y

where −∞ < a <∞ is a real parameter.

(i) For the particular value a = −5 determine eigenvalues and eigenvectors
associated with the system, find equations for stable and unstable invari-
ant manifolds and sketch the phase portrait.

[11]

(ii) Classify for which values of the parameter a the equilibrium point x =
y = 0 of the system represents (i) a focus, (ii) a node, and (iii) a saddle.
For which values of the parameter a is the equilibrium not hyperbolic?

[9]

(b) Demonstrate how to use the function V (x, y) = 1
2
(x2 + y2) for investigating

the global stability of the following system of two nonlinear first-order ODEs:

ẋ = −x3 + 2y3, ẏ = −2xy2 .
[5]

End of Paper—An appendix of 2 pages follows.
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Useful Facts.

• Useful integrals: ∫
xa dx =

1

a+ 1
xa+1, ∀a 6= −1∫

1

x
dx = ln |x| for a = −1;

∫
lnx dx = x ln |x| − x∫

cosx dx = sinx,

∫
sinx dx = − cosx,∫

sinx cosx dx =
1

2
sin2 x,

∫
tanx dx = − ln | cosx|∫

eax cos bx dx =
eax

a2 + b2
(a cos bx+ b sin bx) , a 6= ±ib∫

eax sin bx dx =
eax

a2 + b2
(a sin bx− b cos bx) , a 6= ±ib∫

dx

a2 + x2
=

1

a
arctan

x

a
,

∫
dx√
a2 − x2

= arcsin
x

a∫
dx

x2 − a2
=

1

2a
ln
|x− a|
|x+ a|

,

• Useful trigonometric formulae:

eiθ = cos θ + i sin θ, cos θ =
1

2

(
eiθ + e−iθ

)
, sin θ =

1

2i

(
eiθ − e−iθ

)
cos 2x = cos2 x− sin2 x, sin 2x = 2 sin x cosx

sin (A±B) = sinA cosB±cosA sinB, cos(A±B) = cosA cosB∓sinA sinB

• Reminder on ODEs:

If the equation P (x, y)+Q(x, y)
dy

dx
= 0 is exact, its solution can be found

in the form F (x, y) = Const. where

P =
∂F

∂x
and Q =

∂F

∂y

• If there exists a unique solution y(x) to a non-homogeneous boundary value
problem for ODE L(y) = a2(x)y

′′ + a1(x)y
′ + a0(x) = f(x) in an interval

x ∈ [x1, x2] with linear homogeneous B.C.

αy′(x1) + βy(x1) = 0, γy′(x2) + δy(x2) = 0
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it can be found by the Green’s function method:

y(x) =

∫ x2

x1

G(x, s) f(s) ds, G(x, s) =

{
A(s) yL(x), x1 6 x 6 s
B(s) yR(x), s 6 x 6 x2

where

A(s) =
yR(s)

a2(s)W (s)
, B(s) =

yL(s)

a2(s)W (s)
, W (s) = yL(s)y

′
R(s)−yR(s)y′L(s)

and yL(x), yR(x) are solutions to the left/right initial value problems:

L(y) = 0, y(x1) = α, y′(x1) = −β; and L(y) = 0, y(x2) = γ, y′(x2) = −δ

End of Appendix.

c© Queen Mary, University of London (2015)


