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Question 1. [25 marks]

(a) Find the general solution of the homogeneous ordinary differential equation
(ODE)

y′′+2y′−15y = 0 . [5]

(b) Find the general solution of the inhomogeneous ODE

y′′+2y′−15y =−4ex . [11]

(c) Find the general solution of the first order homogeneous linear ODE

y′ = tan(x)y . [5]

(d) Use the solution in c) to solve the initial value problem for the first order
linear inhomogeneous ODE

y′ = tan(x)y+ sinx , −π/2 < x < π/2 , y(0) = 1

by the variation of parameters method. [4]

Question 2. [25 marks]

(a) Find all functions f (y) such that the following differential equation becomes
exact:

x2 +
f (y)

x
+ ln(xy)

dy
dx

= 0 , x > 0 , y > 0 . [5]

(b) Solve the equation in (a) in implicit form for a particular choice of f (y)
ensuring exactness such that f (0) = 0. [11]

(c) Consider the initial value problem

dy
dx

= f (x,y) , f (x,y) =
√

25+4y2 , y(1) = 0 .

Show that the Picard-Lindelöf Theorem guarantees the existence and
uniqueness of the solution of the above problem in a rectangular domain
D = (|x−a| ≤ A , |y−b| ≤ B) in the xy plane, and specify the parameters a
and b. Find the possible range of values of the height B of the domain D
given that the width A of the domain satisfies A < 1/3. [9]
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Question 3. [25 marks] Find the solution of the following boundary value
problem (BVP) for the second order inhomogeneous ODE

1
cosx

d2y
dx2 +

(
sinx

cos2 x

)
dy
dx

= f (x) , y(0) = 0 , y
(

π

4

)
= 0

by using the Green’s function method along the following lines:

(a) Show that the left-hand side of the ODE can be written down in the form
d
dx

(
r(x)dy

dx

)
for some function r(x). Use this fact to determine the general

solution of the associated homogeneous ODE. [4]

(b) Formulate the left-end and right-end initial value problems corresponding to
the above BVP. [9]

(c) Use the solutions of these initial value problems to construct the Green’s
function G(x,s) of the BVP. [5]

(d) Write down the solution of the BVP in terms of G(x,s) and f (x). Use it to
find the explicit form of the solution for f (x) = 1. [7]

Question 4. [25 marks]
Consider the system of two nonlinear first-order ODEs

ẋ =−4y− x3 , ẏ = 3x− y3 . (1)

(a) Write down in matrix form the linear system obtained by linearization of the
above equations around the fixed point x = y = 0. Then find the
corresponding eigenvalues and eigenvectors. [8]

(b) Determine the type of fixed point for the linear system. Is it stable? Is it
asymptotically stable? Can one judge the stability of the nonlinear system by
the linear approximation? [4]

(c) Write down the general solution of the linear system. [2]

(d) Find the solution of the linear system for the initial conditions x(0) = 2,
y(0) = 0 in terms of real-valued functions. What is the shape of the
corresponding trajectory in the phase plane? [6]

(e) Demonstrate how to use the function V (x,y) = 3x2 +4y2 to investigate the
stability of the original nonlinear system (1). [5]

End of Paper—An appendix of 2 pages follows.
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Formula Sheet
• Useful integrals: ∫

xa dx =
1

a+1
xa+1, ∀a 6=−1∫ 1

x
dx = ln |x| for a =−1,

∫
lnxdx = x ln |x|− x∫

cosxdx = sinx,
∫

sinxdx =−cosx∫
sinxcosxdx =

1
2

sin2 x,
∫

tanxdx =− ln |cosx|∫
eax cosbxdx =

eax

a2 +b2 (acosbx+bsinbx) , a 6=±ib∫
eax sinbxdx =

eax

a2 +b2 (asinbx−bcosbx) , a 6=±ib∫ dx
a2 + x2 =

1
a

arctan
x
a
,
∫ dx√

a2− x2
= arcsin

x
a∫ dx

x2−a2 =
1

2a
ln
|x−a|
|x+a|

• Useful trigonometric formulae:

eiθ = cosθ + isinθ , cosθ =
1
2

(
eiθ + e−iθ

)
, sinθ =

1
2i

(
eiθ − e−iθ

)
cos2x = cos2 x− sin2 x, sin2x = 2sinxcosx

sin(A±B) = sinAcosB± cosAsinB, cos(A±B) = cosAcosB∓ sinAsinB

cos
(

π

4

)
= sin

(
π

4

)
=

1√
2

• Reminder on solving ODEs:

– The ODE
y′ = A(x)y+B(x)

is solved by the variation of parameters method: One starts with finding
the solution of the corresponding homogeneous equation y′ = A(x)y.
One then proceeds by replacing the constant of integration with a
function to be determined.

– If the ODE
P(x,y)+Q(x,y)

dy
dx

= 0

is exact, its solution can be found in the form F(x,y) = Const., where

P =
∂F
∂x

and Q =
∂F
∂y

.
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• For the initial value problem

dy
dx

= f (x,y), y(a) = b

the Picard-Lindelöf Theorem guarantees the existence and uniqueness of the
solution in a rectangular domain D = (|x−a| ≤ A , |y−b| ≤ B) centered at
the point (a,b) in the xy plane provided the following conditions are satisfied:
(i) f (x,y) is continuous and therefore bounded in D

(ii) the partial derivative |∂ f
∂y | is bounded in D

(iii) the parameters A and B satisfy A < B/M, where M = maxD | f (x,y)|.

• If there exists a unique solution y(x) to an inhomogeneous boundary value
problem for ODE L (y) = a2(x)y′′+a1(x)y′+a0(x) = f (x) in an interval
x ∈ [x1,x2] with linear homogeneous boundary condition

αy′(x1)+βy(x1) = 0, γy′(x2)+δy(x2) = 0

it can be found by the Green’s function method:

y(x) =
∫ x2

x1

G(x,s) f (s)ds, G(x,s) =
{

A(s)yL(x), x1 ≤ x≤ s
B(s)yR(x), s≤ x≤ x2

where

A(s) =
yR(s)

a2(s)W (s)
, B(s) =

yL(s)
a2(s)W (s)

, W (s) = yL(s)y′R(s)− yR(s)y′L(s)

and yL(x),yR(x) are solutions to the left/right initial value problems

L (y)= 0, y(x1)= α, y′(x1)=−β and L (y)= 0, y(x2)= γ, y′(x2)=−δ .

• The orbital derivative for a Lyapunov function V (x,y) is defined as

D fV =
∂V
∂x

ẋ+
∂V
∂y

ẏ .

End of Appendix.
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