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Note for the rest of this exam paper ODE refers to ordinary differential equation.

Question 1. [20 marks] The equation of motion for a falling object of mass m is
given by

m
dv
dt

= mg− γv,

where g = 9.8 m/s2 is the acceleration due to gravity, γ is a constant called the drag
coefficient and v = v(t) denotes the velocity of the object at time t. Assume
m = 10 kg and γ = 2 kg/s.

(a) Find the general solution to this differential equation with the given constants. [5]

(b) Now find the specific solution satisfying the initial condition v(0) = 49. [5]

(c) Draw integral curves in the t-v plane for various initial conditions, including
the initial condition v(0) = 49. [5]

(d) Interpret your graph for this model, explaining briefly the behaviour of your
solutions as t −→ ∞ for different initial conditions. [5]

Write your solutions here
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Continue-1: solutions to question 1

Write your solutions here
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Continue-2: solutions to question 1

Write your solutions here
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Question 2. [20 marks] Consider the following first-order, linear, inhomogeneous
initial value problem{

y′ = y tan x + sin x, −π/2 < x < π/2
y(0) = 1 .

(a) Find a solution y = y(x) to the initial value problem. [10]

(b) Use the Picard-Lindelöf Theorem to justify existence and uniqueness of
solutions to the above IVP in an appropriate rectangular domain. [10]

Write your solutions here
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Continue-1: solutions to question 2

Write your solutions here
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Continue-2: solutions to question 2

Write your solutions here
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Continue-3: solutions to question 2

Write your solutions here
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Question 3. [20 marks] Consider the differential equation given by

x2 +
f (y)
xy

+ ln |xy| dy
dx

= 0.

(a) Find all functions f (y) such that the differential equation becomes exact. [10]

(b) For the function f which makes the differential equation exact and which
further satisfies f (1) = 1, solve the equation in implicit form. [10]

Write your solutions here
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Continue-1: solutions to question 3

Write your solutions here
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Continue-2: solutions to question 3

Write your solutions here
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Question 4. [20 marks] Consider the following Euler-type equation

x2 d2y
dx2 − 2y = 0. (∗)

(a) Using x = et and z(t) = y(et), verify that (∗) can be rewritten as

z̈− ż− 2z = 0.

Use this equation to find the general solution y = y(x) to (∗). [5]

(b) Next, consider the Boundary Value Problem (BVP) for the second order
inhomogeneous differential equation

x2 d2y
dx2 − 2y = f (x) , y(1) = 0 , y(2) + 2y′(2) = 0.

Formulate the corresponding left-end and right-end initial value problems. You
do not need to solve the IVPs. [5]

(c) Assume that

yL(x) =
1

3x
− 1

3
x2 and yR(x) =

4
x

are the solutions to the IVPs in part (b). Write down the Green’s function G(x, s)
for the BVP in simplified form. [5]

(d) Represent the solution to the BVP in terms of the Green’s function G(x, s) for the
particular choice f (x) = ex. You do not need to evaluate the resulting integrals. [5]

Write your solutions here
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Continue-1: solutions to question 4

Write your solutions here
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Continue-2: solutions to question 4

Write your solutions here
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Continue-3: solutions to question 4

Write your solutions here
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Continue-4: solutions to question 4

Write your solutions here
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Question 5. [20 marks] Consider the autonomous dynamical system given by

ẋ = 4y , ẏ = −x.

(a) Rewrite the system in matrix form and find the associated eigenvalues and
eigenvectors. [5]

(b) Determine the solutions of the corresponding initial value problems for the
general initial conditions x(0) = a, y(0) = b. [5]

(c) Sketch the phase portrait in the (x, y) phase plane and describe the shape of the
trajectories in the phase plane. If the initial condition is (x(0), y(0)) = (3, 4),
describe the qualitative behaviour of the solution given in the phase portrait. [5]

(d) Determine all fixed points of the system and describe the stability of
(x(t), y(t)) = (0, 0) as a solution for the linear system. What type of equilibrium
point is (0, 0)? [5]

Write your solutions here
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Continue-1: solutions to question 5

Write your solutions here
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Continue-2: solutions to question 5

Write your solutions here
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End of Paper – An appendix of 1 page follows.
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Appendix

Picard-Lindelöf Theorem. Let D be the rectangular domain in the xy plane defined
as D = (|x− a| 6 A, |y− b| 6 B) and suppose f (x, y) is a function defined on D
which satisfies the following conditions:

(i) f (x, y) is continuous and therefore bounded in D

(ii) the parameters A and B satisfy A ≤ B/M where M = maxD| f (x, y)|

(iii) | ∂ f
∂y | is bounded in D.

Then there exists a unique solution on D to the initial value problem

dy
dx

= f (x, y), y(a) = b.

Green’s Function Method. If there exists a unique solution y(x) to the
inhomogeneous boundary value problem

L(y) = a2(x)y′′ + a1(x)y′ + a0(x)y = f (x)

in an interval x ∈ [x1, x2] with linear homogeneous boundary conditions

αy′(x1) + βy(x1) = 0, γy′(x2) + δy(x2) = 0,

it can be found by the Green’s function method:

y(x) =
∫ x2

x1

G(x, s) f (s) ds, G(x, s) ≡
{

A(s) yL(x), x1 6 x 6 s
B(s) yR(x), s 6 x 6 x2

.

Here

A(s) =
yR(s)

a2(s)W(s)
, B(s) =

yL(s)
a2(s)W(s)

, W(s) ≡ yL(s)y′R(s)− yR(s)y′L(s)

and yL(x), yR(x) are solutions to the left/right initial value problems:

L(y) = 0, y(x1) = α, y′(x1) = −β; and L(y) = 0, y(x2) = γ, y′(x2) = −δ.

End of Appendix.
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