May MTH5123 Exam

1. Question 1a

a) Which of the following ordinary differential equations (ODEs) has t as the independent variable and can be solved by the separation of variables method? (4 marks)

• I \checkmark • II \checkmark • III • IV where I: $\frac{dy}{dt} = y^2 \tanh(t^2 + 4t)$, II: $\dot{y} = e^y e^t + e^t$, III: $y' = 2xy^2$, IV: $\dot{y} = \sin y + e^t$

b) Which of the following ODEs can be reduced to be separable? (4 marks)

• I
$$\checkmark$$
 • II • III \checkmark
where I: $y' = \ln(y) - \ln(x) - 3$, II: $y' = \tanh((y/x)^2) + 2e^{x+y}$, III: $\dot{y} = ty$.

c) Which of the following statements is correct for solving the ODE, $\dot{x} = 3\cos(t/x) + 9(x/t)^2$? (4 marks)

• The ODE can be reduced to be separable;

• This is an inhomogeneous linear ODE that can be solved by the variation of parameter method;

• The method to solve exact ODEs can be applied;

d) The solution to the initial value problem $y' = \frac{4}{\cos(y)}, y(0) = \pi/2$ is, (8 marks)

where

$$\begin{split} \text{I:} y(x) &= \arcsin(C+4x) \text{, where } C \text{ is an arbitrary constant,} \\ \text{II:} y(x) &= \arcsin(4x+1) \\ \text{III:} y(x) &= 4\arccos(-1+4x) \\ \text{IV:} y(x) &= \frac{1}{4}\sin(x+1) \end{split}$$

2. Question 1b

a) Which of the following ordinary differential equations (ODEs) has

t as the independent variable and can be solved by the separation of variables method? (4 marks)

• I • II • III • III \checkmark • IV \checkmark where I: $\frac{dy}{dx} = e^y \sin(y)$, II: $\dot{y} = t + e^{t+y}$, III: $\dot{y} = t^2 \cos(y+5)$, IV: $\dot{y} = e^{t^2+y}$

b) Which of the following ODEs can be reduced to be separable? (4 marks)

• I \checkmark • II \checkmark • III \checkmark • III where I: $y' = 3\ln(y) - 3\ln(x) + 10\frac{y}{x}$, II: $y' = \tanh((y/x)^2) + 2e^{x/y}$, III: $\dot{y} = (t+3y)t$.

c) Which of the following statements is correct for solving the ODE, $\dot{x} = 3\cos(5x + 7t - 2)$? (4 marks)

• The ODE can be reduced to be separable;

• This is an inhomogeneous linear ODE that can be solved by the variation of parameter method;

• The method to solve exact ODEs can be applied;

d) The solution to the initial value problem $y' = \frac{3}{\sin(y)}, y(0) = \pi/2$ is, (8 marks)

where

I: $y(x) = \arcsin(C + 3x)$, where C is an arbitrary constant, II: $y(x) = \arcsin(C - 3x)$, where C is an arbitrary constant, III: $y(x) = \arccos(3x)$ IV: $y(x) = \arccos(-3x)$

3. Question 2a

Find the right match for the following ODEs in the dropdown menu

1st-order reducible to separable ODE
None of the above forms
1st-order linear ODE
Euler-type ODE

(e)
$$y = y'' \sin(x) + e^x + 2$$

4. Question 2b

Find the right match for the following ODEs in the dropdown menu

(a) $y'' - \sin(x) = y \ln(x)$ 2nd-order linear inhomogeneous ODE(b) $\dot{y} = y \sin(t^2) + 6$ 1st-order linear ODE(c) y'' = 3x - 2y + 6None of the above forms(d) $y' = \tanh(x + y)$ 1st-order reducible to separable ODE(e) $9xy' = y - 7x^2y''$ Euler-type ODE

5. Question 3a

a) Consider the initial value problem (IVP) $y' = yx/(x^2 - 1)$, y(0) = 1. Does this IVP satisfy the hypotheses of the Picard-Lindelöf theorem? (5 marks)

- Yes because the function $f(x, y) = yx/(x^2 1)$ is continuous in a sufficiently small rectangular region D centered in the point of the xy plane of coordinates $(x_0, y_0) = (0, 1)$.
- No because the function $f(x, y) = yx/(x^2 1)$ is not continuous in a sufficiently small rectangular region D centred in the point of the xy plane of coordinates $(x_0, y_0) = (0, 1)$.
- Yes because the function $f(x, y) = yx/(x^2 1)$ and its partial derivative $\partial f(x, y)/\partial y$ are continuous in a sufficiently small rectangular region D centred in the point of the xy plane of coordinates $(x_0, y_0) = (0, 1)$.
- No because the neither the function $f(x,y) = yx/(x^2 1)$ nor its partial derivative $\partial f(x,y)/\partial y$ are continuous in a sufficiently small rectangular region D centred in the point of the xy plane of coordinates $(x_0, y_0) = (0, 1)$.

b) What is the solution to the initial value problem in point (a) valid sufficiently close to the initial condition? (5 marks)

- I
- II
- III √

where $I:y(x) = 2\sqrt{|x^2 - 1|}$, $II:y(x) = \sqrt{x^2 - 1}$, $III:y(x) = \sqrt{1 - x^2}$.

c) Consider the initial value problem (IVP) $y' = yx/(x^2 - 1)$, y(1) = 0. Does this IVP satisfy the hypotheses of the Picard-Lindelöf theorem? (5 marks)

- Yes because the function f(x, y) = yx/(x² − 1) is continuous in a sufficiently small rectangular region D centred in the point of the xy plane of coordinates(x₀, y₀) = (1, 0).
- No because the function f(x, y) = yx/(x² 1) is not continuous in a sufficiently small rectangular region D centred in the point of the xy plane of coordinates (x₀, y₀) = (1, 0). ✓
- Yes because the function $f(x, y) = yx/(x^2 1)$ and its partial derivative $\partial f(x, y)/\partial y$ are continuous in a sufficiently small rectangular region D centred in the point of the xy plane of coordinates $(x_0, y_0) = (1, 0)$.
- d) How many solutions does the IVP in point (d) have? (5 marks)
 - None
 - 1
 - 2
 - Infinite \checkmark

6. Question 3b

a) Consider the initial value problem (IVP) $y' = 2yx/(x^2-4)$, y(0) = 1. Does this IVP satisfy the hypotheses of the Picard-Lindelöf theorem? (5 marks)

- Yes because the function $f(x, y) = 2yx/(x^2 4)$ is continuous in a sufficiently small rectangular region D centered in the point of the xy plane of coordinates $(x_0, y_0) = (0, 1)$.
- No because the function $f(x, y) = 2yx/(x^2 4)$ is not continuous in a sufficiently small rectangular region D centred in the point of the xy plane of coordinates $(x_0, y_0) = (0, 1)$.
- Yes because the function $f(x, y) = 2yx/(x^2 4)$ and its partial derivative $\partial f(x, y)/\partial y$ are continuous in a sufficiently small rectan-

gular region D centred in the point of the xy plane of coordinates $(x_0, y_0) = (0, 1)$.

• No because the neither the function $f(x, y) = 2yx/(x^2 - 4)$ nor its partial derivative $\partial f(x, y)/\partial y$ are continuous in a sufficiently small rectangular region D centred in the point of the xy plane of coordinates $(x_0, y_0) = (0, 1)$.

b) What is the solution to the initial value problem in point (a) valid sufficiently close to the initial condition? (5 marks)

- I
- II
- III ✓

where $I:y(x) = 1 - x^2/4$, $II:y(x) = 1 - x^2$, $III:y(x) = \sqrt{4 - x^2}/2$.

c) Consider the initial value problem (IVP) $y' = 2yx/(x^2-4)$, y(-2) = 0. Does this IVP satisfy the hypotheses of the Picard-Lindelöf theorem? (5 marks)

- Yes because the function $f(x, y) = 2yx/(x^2 4)$ is continuous in a sufficiently small rectangular region D centred in the point of the xy plane of coordinates $(x_0, y_0) = (-2, 0)$.
- No because the function $f(x, y) = 2yx/(x^2 4)$ is not continuous in a sufficiently small rectangular region D centred in the point of the xy plane of coordinates $(x_0, y_0) = (-2, 0)$.
- Yes because the function f(x, y) = 2yx/(x² − 4) and its partial derivative ∂f(x, y)/∂y are continuous in a sufficiently small rectangular region D centred in the point of the xy plane of coordinates (x₀, y₀) = (-2, 0).

d) How many solutions does the IVP in point (c) have? (5 marks)

- None
- 1
- 2
- Infinite \checkmark
- 7. Question 4a

(a) Consider the boundary value problem (BVP) $3y'' + 12y = \sin(2x)$ $y(0) = 0, y(\pi/2) = 1$. Does this BVP have a unique solution ? (5 marks)

- \bullet Yes
- No 🗸
- It is impossible to determine the ODE cannot be solved.

(b) For which real value of b the following BVP $3y'' = -12y + \sin(b)$ $y(0) = 0, y(\pi/2) = 1$ has a unique solution ? (5 marks)

• $b = n\pi$ with *n* integer • $b \neq n\pi$ with *n* integer • Any value of *b* • No value of $b \checkmark$

8. Question 4b

(a) Consider the boundary value problem (BVP) $5y'' + 45y = -\tan(7x)$ $y(0) = 0, y(\pi/7) = 1$. Does this BVP have a unique solution ? (5 marks)

- Yes \checkmark
- No
- It is impossible to determine the ODE cannot be solved.

(b) For which real value of b the following BVP $5y'' = -45y + \cos(3b)$ $y(0) = 0, y(\pi/3) = -5$ has a unique solution ? (5 marks)

b = nπ/2 with n integer
b ≠ nπ/2 with n integer
Any value of b
No value of b ✓

9. Question 5a

(a) Consider a system of two ordinary differential equations: $\dot{y}_1 = \tan(\frac{1}{2}y_1 - y_2) - y_2^2$, $\dot{y}_2 = \sin(y_1) + \frac{1}{2}\sin(y_2)$.

Linearise the system of ODE close to the $(y_1, y_2) = (0, 0)$ equilibria. The phase portrait of the linearised system displays a: (5 marks)

Stable node ● Unstable node ● Saddle ● Unstable focus with spiral out ✓ ● Centre ● Stable focus with spiral in

(b) For which real value of a the system of ODEs $\dot{y}_1 = \sin(ay_2 + 2y_1), \quad \dot{y}_2 = -\tanh(y_1 + ay_2)$ when linearised displays a saddle at $(y_1, y_2) = (0, 0)$? (5 marks)

- *a* < 2
- a > 0 \checkmark
- a < -2
- $\bullet \ -2 < a < 0$

10. Question 5b

(a) Consider a system of two first-order ordinary differential equations: $\dot{y}_1 = 2e^{y_1} - 2 + ay_2$, $\dot{y}_2 = -2 \tanh(y_1 + y_2 + y_2^3)$. Linearise the system of ODE close to the $(y_1, y_2) = (0, 0)$ equilibria. For a = 1 the phase portrait of the linearised system is: (5 marks)

• Stable node • Unstable node • Saddle \checkmark • Unstable focus with spiral out • Centre • Stable focus with spiral in (b) For which real value of *a* the system of ODEs $\dot{y}_1 = a \sin(y_1 + y_2) + \tanh(y_1^3), \quad \dot{y}_2 = -\tanh(y_1 + y_1^2) - ay_2$ when linearised, displays a centre around the equilibria $(y_1, y_2) = (0, 0)$? (5 marks)

- Any value of a
- a > 0
- $\bullet \ -1 < a < 0 \ \checkmark$
- a < -1

11. Question 6

This question requires an handwritten answer which should be uploaded here in a the format of a single combined pdf.

a) Consider the ODE describing the motion of a pendulum in presence of friction. Let θ indicate the angle of the pendulum with respect to the vertical line and let t indicate the time.

The ODE describing the motion of the pendulum is given by

$$m\ell\ddot{\theta} = -mg\sin\theta - \gamma\dot{\theta},\tag{1}$$

with $\theta \in [-\pi/2, \pi/2]$. Here m > 0 indicates the mass of the pendulum, $\ell > 0$ indicates its length, g > 0 indicates the gravitational constant,

and $\gamma \leq 0$ is a constant real parameter indicating the intensity of the friction.

- Identify the dependent and independent variable in this ODE. (1 marks)
- Is this a linear or non-linear ODE? (2 mark)
- Which is the order of this ODE? (2 mark)

b) Consider the ODE introduced in point (a) and describing the motion of the pendulum

$$m\ell\ddot{\theta} = -mg\sin(\theta) - \gamma\dot{\theta}.$$
 (2)

with $\theta \in [-\pi/2, \pi/2]$. Put m = 1 and $\ell = 1$.

- Convert this ODE into a system of two first-order ODEs. (4 marks)
- Compute all equilibria of this system of ODEs. Linearise this system of ODE around each equilibria.
 Find the eigenvalues of the linearised system around each equilibria. (9 marks)
- Assume that g > 0 is constant but that γ ≥ 0 can be tuned.
 For which values of γ the phase portraits of the linearised systems are fixed points?
 For which values of γ the phase portraits of the linearised systems

For which values of γ the phase portraits of the linearised systems are stable focuses?

For which values of γ the phase portraits of the linearised systems are centres? (9 marks)

• Explain the meaning of your results. (3 marks)