May MTH5123 Exam

1. Question 1a

a) Which of the following ordinary differential equations (ODEs) has t as the independent variable and can be solved by the separation of variables method? (4 marks)

- I \checkmark
- II
- III
- IV
where I: $\frac{d y}{d t}=y^{2} \tanh \left(t^{2}+4 t\right)$, II: $\dot{y}=e^{y} e^{t}+e^{t}$, III: $y^{\prime}=2 x y^{2}$, IV: $\dot{y}=$ $\sin y+e^{t}$
b) Which of the following ODEs can be reduced to be separable? (4 marks)
- I
- II
- III \checkmark
where I: $y^{\prime}=\ln (y)-\ln (x)-3$, II: $y^{\prime}=\tanh \left((y / x)^{2}\right)+2 e^{x+y}$, III: $\dot{y}=t y$.
c) Which of the following statements is correct for solving the ODE, $\dot{x}=3 \cos (t / x)+9(x / t)^{2}$? (4 marks)
- The ODE can be reduced to be separable;
- This is an inhomogeneous linear ODE that can be solved by the variation of parameter method;
- The method to solve exact ODEs can be applied;
d) The solution to the initial value problem $y^{\prime}=\frac{4}{\cos (y)}, y(0)=\pi / 2$ is, (8 marks)
- I
- II
- III
- IV
where
$\mathrm{I}: y(x)=\arcsin (C+4 x)$, where C is an arbitrary constant,
II: $y(x)=\arcsin (4 x+1)$
III: $y(x)=4 \arccos (-1+4 x)$
IV: $y(x)=\frac{1}{4} \sin (x+1)$

2. Question 1b
a) Which of the following ordinary differential equations (ODEs) has
t as the independent variable and can be solved by the separation of variables method? (4 marks)

- I
- II
- III
- IV \checkmark
where I: $\frac{d y}{d x}=e^{y} \sin (y)$, II: $\dot{y}=t+e^{t+y}$, III: $\dot{y}=t^{2} \cos (y+5)$, IV: $\dot{y}=$ $e^{t^{2}+y}$
b) Which of the following ODEs can be reduced to be separable? (4 marks)
- I \checkmark
- II
- III
where I: $y^{\prime}=3 \ln (y)-3 \ln (x)+10 \frac{y}{x}$, II: $y^{\prime}=\tanh \left((y / x)^{2}\right)+2 e^{x / y}$, III: $\dot{y}=(t+3 y) t$.
c) Which of the following statements is correct for solving the ODE, $\dot{x}=3 \cos (5 x+7 t-2)$? (4 marks)
- The ODE can be reduced to be separable;
- This is an inhomogeneous linear ODE that can be solved by the variation of parameter method;
- The method to solve exact ODEs can be applied;
d) The solution to the initial value problem $y^{\prime}=\frac{3}{\sin (y)}, y(0)=\pi / 2$ is, (8 marks)
- I
- II
- III
- IV
where
$\mathrm{I}: y(x)=\arcsin (C+3 x)$, where C is an arbitrary constant,
II: $y(x)=\arcsin (C-3 x)$, where C is an arbitrary constant,
III: $y(x)=\arccos (3 x)$
IV: $y(x)=\arccos (-3 x)$

3. Question 2a

Find the right match for the following ODEs in the dropdown menu
(a) $y^{\prime}=\sin (x / y) \quad$ 1st-order reducible to separable ODE
(b) $y^{\prime \prime}=5 x+3 y+2$

None of the above forms
(c) $\dot{y}=e^{t}+t^{2} y$
(d) $3 x y^{\prime}=y-2 x^{2} y^{\prime \prime}$

1st-order linear ODE
Euler-type ODE
(e) $y=y^{\prime \prime} \sin (x)+e^{x}+2$ 2nd-order linear inhomogeneous ODE

4. Question 2b

Find the right match for the following ODEs in the dropdown menu
(a) $y^{\prime \prime}-\sin (x)=y \ln (x) \quad$ 2nd-order linear inhomogeneous ODE
(b) $\dot{y}=y \sin \left(t^{2}\right)+6$
(c) $y^{\prime \prime}=3 x-2 y+6$
(d) $y^{\prime}=\tanh (x+y)$

1st-order linear ODE
(e) $9 x y^{\prime}=y-7 x^{2} y^{\prime \prime}$

None of the above forms
1st-order reducible to separable ODE
Euler-type ODE

5. Question 3a

a) Consider the initial value problem (IVP) $y^{\prime}=y x /\left(x^{2}-1\right), \quad y(0)=$ 1. Does this IVP satisfy the hypotheses of the Picard-Lindelöf theorem? (5 marks)

- Yes because the function $f(x, y)=y x /\left(x^{2}-1\right)$ is continuous in a sufficiently small rectangular region D centered in the point of the $x y$ plane of $\operatorname{coordinates}\left(x_{0}, y_{0}\right)=(0,1)$.
- No because the function $f(x, y)=y x /\left(x^{2}-1\right)$ is not continuous in a sufficiently small rectangular region D centred in the point of the $x y$ plane of coordinates $\left(x_{0}, y_{0}\right)=(0,1)$.
- Yes because the function $f(x, y)=y x /\left(x^{2}-1\right)$ and its partial derivative $\partial f(x, y) / \partial y$ are continuous in a sufficiently small rectangular region D centred in the point of the $x y$ plane of coordinates $\left(x_{0}, y_{0}\right)=(0,1)$.
- No because the neither the function $f(x, y)=y x /\left(x^{2}-1\right)$ nor its partial derivative $\partial f(x, y) / \partial y$ are continuous in a sufficiently small rectangular region D centred in the point of the $x y$ plane of coordinates $\left(x_{0}, y_{0}\right)=(0,1)$.
b) What is the solution to the initial value problem in point (a) valid sufficiently close to the initial condition? (5 marks)
- I
- II
- III \checkmark
where I: $y(x)=2 \sqrt{\left|x^{2}-1\right|}, \mathrm{II}: y(x)=\sqrt{x^{2}-1}, \mathrm{III}: y(x)=\sqrt{1-x^{2}}$.
c) Consider the initial value problem (IVP) $y^{\prime}=y x /\left(x^{2}-1\right), \quad y(1)=$ 0 . Does this IVP satisfy the hypotheses of the Picard-Lindelöf theorem? (5 marks)
- Yes because the function $f(x, y)=y x /\left(x^{2}-1\right)$ is continuous in a sufficiently small rectangular region D centred in the point of the $x y$ plane of coordinates $\left(x_{0}, y_{0}\right)=(1,0)$.
- No because the function $f(x, y)=y x /\left(x^{2}-1\right)$ is not continuous in a sufficiently small rectangular region D centred in the point of the $x y$ plane of coordinates $\left(x_{0}, y_{0}\right)=(1,0)$.
- Yes because the function $f(x, y)=y x /\left(x^{2}-1\right)$ and its partial derivative $\partial f(x, y) / \partial y$ are continuous in a sufficiently small rectangular region D centred in the point of the $x y$ plane of coordinates $\left(x_{0}, y_{0}\right)=(1,0)$.
d) How many solutions does the IVP in point (d) have? (5 marks)
- None
- 1
- 2
- Infinite \checkmark

6. Question 3b

a) Consider the initial value problem (IVP) $y^{\prime}=2 y x /\left(x^{2}-4\right), \quad y(0)=$ 1. Does this IVP satisfy the hypotheses of the Picard-Lindelöf theorem? (5 marks)

- Yes because the function $f(x, y)=2 y x /\left(x^{2}-4\right)$ is continuous in a sufficiently small rectangular region D centered in the point of the $x y$ plane of $\operatorname{coordinates}\left(x_{0}, y_{0}\right)=(0,1)$.
- No because the function $f(x, y)=2 y x /\left(x^{2}-4\right)$ is not continuous in a sufficiently small rectangular region D centred in the point of the $x y$ plane of coordinates $\left(x_{0}, y_{0}\right)=(0,1)$.
- Yes because the function $f(x, y)=2 y x /\left(x^{2}-4\right)$ and its partial derivative $\partial f(x, y) / \partial y$ are continuous in a sufficiently small rectan-
gular region D centred in the point of the $x y$ plane of coordinates $\left(x_{0}, y_{0}\right)=(0,1)$.
- No because the neither the function $f(x, y)=2 y x /\left(x^{2}-4\right)$ nor its partial derivative $\partial f(x, y) / \partial y$ are continuous in a sufficiently small rectangular region D centred in the point of the $x y$ plane of coordinates $\left(x_{0}, y_{0}\right)=(0,1)$.
b) What is the solution to the initial value problem in point (a) valid sufficiently close to the initial condition? (5 marks)
- I
- II
- III \checkmark
where I: $y(x)=1-x^{2} / 4$, II: $y(x)=1-x^{2}$, III: $y(x)=\sqrt{4-x^{2}} / 2$.
c) Consider the initial value problem (IVP) $y^{\prime}=2 y x /\left(x^{2}-4\right), \quad y(-2)=$ 0 . Does this IVP satisfy the hypotheses of the Picard-Lindelöf theorem? (5 marks)
- Yes because the function $f(x, y)=2 y x /\left(x^{2}-4\right)$ is continuous in a sufficiently small rectangular region D centred in the point of the $x y$ plane of coordinates $\left(x_{0}, y_{0}\right)=(-2,0)$.
- No because the function $f(x, y)=2 y x /\left(x^{2}-4\right)$ is not continuous in a sufficiently small rectangular region D centred in the point of the $x y$ plane of coordinates $\left(x_{0}, y_{0}\right)=(-2,0)$.
- Yes because the function $f(x, y)=2 y x /\left(x^{2}-4\right)$ and its partial derivative $\partial f(x, y) / \partial y$ are continuous in a sufficiently small rectangular region D centred in the point of the $x y$ plane of coordinates $\left(x_{0}, y_{0}\right)=(-2,0)$.
d) How many solutions does the IVP in point (c) have? (5 marks)
- None
- 1
- 2
- Infinite \checkmark

7. Question 4a

(a) Consider the boundary value problem (BVP) $3 y^{\prime \prime}+12 y=\sin (2 x)$ $y(0)=0, y(\pi / 2)=1$. Does this BVP have a unique solution ? (5 marks)

- Yes
- No \checkmark
- It is impossible to determine the ODE cannot be solved.
(b) For which real value of b the following BVP $3 y^{\prime \prime}=-12 y+\sin (b)$ $y(0)=0, y(\pi / 2)=1$ has a unique solution ? (5 marks)
$\bullet b=n \pi$ with n integer • $b \neq n \pi$ with n integer • Any value of b
No value of $b \checkmark$

8. Question 4b

(a) Consider the boundary value problem (BVP) $5 y^{\prime \prime}+45 y=-\tan (7 x)$ $y(0)=0, y(\pi / 7)=1$. Does this BVP have a unique solution ? (5 marks)

- Yes \checkmark
- No
- It is impossible to determine the ODE cannot be solved.
(b) For which real value of b the following BVP $5 y^{\prime \prime}=-45 y+\cos (3 b)$ $y(0)=0, y(\pi / 3)=-5$ has a unique solution ? (5 marks)
- $b=n \pi / 2$ with n integer $\bullet b \neq n \pi / 2$ with n integer • Any value of b
- No value of $b \checkmark$

9. Question 5a

(a) Consider a system of two ordinary differential equations: $\dot{y_{1}}=$ $\tan \left(\frac{1}{2} y_{1}-y_{2}\right)-y_{2}^{2}, \quad \dot{y}_{2}=\sin \left(y_{1}\right)+\frac{1}{2} \sin \left(y_{2}\right)$.
Linearise the system of ODE close to the $\left(y_{1}, y_{2}\right)=(0,0)$ equilibria. The phase portrait of the linearised system displays a: (5 marks)

- Stable node - Unstable node - Saddle •
- Unstable focus with spiral out \checkmark - Centre - Stable focus with spiral in
(b) For which real value of a the system of ODEs
$\dot{y}_{1}=\sin \left(a y_{2}+2 y_{1}\right), \quad \dot{y_{2}}=-\tanh \left(y_{1}+a y_{2}\right)$ when linearised displays a saddle at $\left(y_{1}, y_{2}\right)=(0,0)$? $(5$ marks $)$
- $a<2$
- $a>0 \checkmark$
- $a<-2$
- $-2<a<0$

10. Question 5b

(a) Consider a system of two first-order ordinary differential equations: $\dot{y_{1}}=2 e^{y_{1}}-2+a y_{2}, \quad \dot{y}_{2}=-2 \tanh \left(y_{1}+y_{2}+y_{2}^{3}\right)$.
Linearise the system of ODE close to the $\left(y_{1}, y_{2}\right)=(0,0)$ equilibria. For $a=1$ the phase portrait of the linearised system is: (5 marks)

- Stable node • Unstable node - Saddle \checkmark • Unstable focus with spiral out
- Centre - Stable focus with spiral in
(b) For which real value of a the system of ODEs
$\dot{y}_{1}=a \sin \left(y_{1}+y_{2}\right)+\tanh \left(y_{1}^{3}\right), \quad \dot{y}_{2}=-\tanh \left(y_{1}+y_{1}^{2}\right)-a y_{2}$ when linearised, displays a centre around the equilibria $\left(y_{1}, y_{2}\right)=(0,0)$? (5 marks)
- Any value of a
- $a>0$
- $-1<a<0 \quad \checkmark$
- $a<-1$

11. Question 6

This question requires an handwritten answer which should be uploaded here in a the format of a single combined pdf.
a) Consider the ODE describing the motion of a pendulum in presence of friction. Let θ indicate the angle of the pendulum with respect to the vertical line and let t indicate the time.
The ODE describing the motion of the pendulum is given by

$$
\begin{equation*}
m \ell \ddot{\theta}=-m g \sin \theta-\gamma \dot{\theta}, \tag{1}
\end{equation*}
$$

with $\theta \in[-\pi / 2, \pi / 2]$. Here $m>0$ indicates the mass of the pendulum, $\ell>0$ indicates its length, $g>0$ indicates the gravitational constant,
and $\gamma \leq 0$ is a constant real parameter indicating the intensity of the friction.

- Identify the dependent and independent variable in this ODE. (1 marks)
- Is this a linear or non-linear ODE? (2 mark)
- Which is the order of this ODE? (2 mark)
b) Consider the ODE introduced in point (a) and describing the motion of the pendulum

$$
\begin{equation*}
m \ell \ddot{\theta}=-m g \sin (\theta)-\gamma \dot{\theta} \tag{2}
\end{equation*}
$$

with $\theta \in[-\pi / 2, \pi / 2]$. Put $m=1$ and $\ell=1$.

- Convert this ODE into a system of two first-order ODEs. marks)
- Compute all equilibria of this system of ODEs.

Linearise this system of ODE around each equilibria.
Find the eigenvalues of the linearised system around each equilibria. (9 marks)

- Assume that $g>0$ is constant but that $\gamma \geq 0$ can be tuned.

For which values of γ the phase portraits of the linearised systems are fixed points?
For which values of γ the phase portraits of the linearised systems are stable focuses?
For which values of γ the phase portraits of the linearised systems are centres? (9 marks)

- Explain the meaning of your results. (3 marks)

