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MTH5123 Differential Equations

Formative Assessment: Week 10 — Solutions G. Bianconi

I. Practice Problems-Solution of selected questions

A. Determine the type of equilibrium at y; = 0,y = 0 for the following ODE systems.

A remind of Coursework 8 and the solutions
1) 41 = —2y1 + 2u2, Y2 = 3y1 — 3¥2, ¥1(0) = a,y2(0) = b. The solution to this L.V.P.
is given by y; = 1(a + b)e* + 3(a —b)e™ | yo = 2(a+b)e* — 1(a — b)e .

2) yl = —U -+ 53/2 s yg = - -+ Yo, yl(O) =0 s y2(0) = 4 . The solution to this I.V.P.
is given by y; = 10sin 2t |y, = 2sin 2t + 4 cos 2t.

Solutions:
(1) The fixed point is a saddle, becaues we have the two real eigenvalues, one
positive and one negative for this linear ODE systems.

(Revision of Sketching phase portraits: Choosing the initial conditions such that a = b
we have y; = y» = ae?® for any ¢, and this line defines one of the invariant manifolds.
Along this line the motion is away from the origin towards oo for t — oo (for @ > 0 and
a < 0, respectively). The second invariant manifold y, = —y; corresponds to the initial
conditions b = —a. Along this line the motion is towards the origin, i.e., for t — co we
have yo = —y; — 0. For initial conditions away from the two invariant manifolds we have
asymptotically ys ~ y; ~ %(a + b)e* for t — oco. This means the typical trajectories are
hyperbolic-like curves whose tangent is parallel asymptotically to the y, = y; direction
for t — oo and is parallel to the yo = —y; direction for t — —o0; see the figure to the end
(left).)

(2)The fixed point is a centre, because the eigenvalues are two complex num-
bers with the real part (or TrA) equals to 0.

In addition, according to the solution to this IVP, the trajectories must be ellipses; see
the figure below for the particular trajectory passing through the given initial conditions.
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Figure 1: Left: The phase portrait for problem Al) featuring a saddle. Right: The
trajectory solving the initial value problem A2). The equilibrium at (0,0) is a center.
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B. Determine the general solution, sketch the phase portraits and determine the type of
equilibrium at y; = 0, y, = 0 for the following systems of linear differential equations:

1) 41 =—y1+6y2, Y2 = —3y1 + 82
Solution: First we rewrite the system in the matrix form y = Au, where A =

-3 8
values:

-1 6 . . : ) :
( ) Next we obtain the characteristic equation and determine the eigen-

(=1 =XNB =N +18=X—-TA+10=0, \; =5, \y =2.

Thus, the equilibrium at (0,0) is an unstable node source, because both
eigenvalues are positive. Then we determine the eigenvector components for

/\1 =5:
-1 6 P1 _5 D1 N —p1 + 6q1 = 5p1
-3 8 ¢ ¢ —3p1 +8¢1 =5q1 ’
which gives p; = ¢ so that the corresponding eigenvector can be chosen to u; =

1 o . . .
( 1 ) Similarly, we find that the eigenvector corresponding to A\; = 2 is given by

up = ( 1}2 > Finally, the general solution to the system of ODEs is given by
Y1\ _ se (1 2t 1
() =ae (i) e ()

1
yl(t) = 01€5t + CQGZt s yg(t) = 0165t + 5026’% .

or in components



Figure 2: The phase portrait for problem B1) featuring an unstable node source.

2) h=—y1+Y, Y=y —

1 -1
The characteristic equation is (—1—\)(—1—X)—1 = A24+2XA =0, A =0, Ay = —2.
Thus, the equilibrium at (0,0) is stable, as one eigenvalue is negative and

Solution: We rewrite the system in the matrix form x = Au with A = < - > :

. . . 1
the other is zero. The corresponding eigenvector can be chosen as u; = ( 1 )

and u, = ( _11 ) Finally, the general solution to the system of ODEs is given by
v\ _ 1 o1
(n)-a(i)e(h)

U1 (t) = 01 + 026_2t s yg(t) = Cl — 0282t .

or in components

Note: In the above system, we have two real eigenvalues and one eigenvalue is zero.

All points on the line of the eigenvector u; = 1 obtained under A = 0 are all

equilibrium points. You can check this by the ODE, when y, = y; both ¢; = 0 and
g2 = 0. The equilibrium at (0, 0) is stable (see the phase portraits below) but not a
stable node sink.
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Figure 3: The phase portrait for problem B2) featuring a stable equilibrium.

Y1 = —4y1 — 8ya, Yo =4y + 4y

Solution: We rewrite the system in the matrix formy = Au with A = _44 _48
The characteristic equation is (—4 — A)(4 — A) + 32 = A? + 16 = 0 which yields two
complex-conjugate eigenvalues A\; = 41, Ay = —4i. we can know that the equi-

librium at (0,0) is a center, because the two eigenvalues are complex and
their real parts both equal to zero. The eigenvector components for A\; = 44
are obtained by

-4 -8 D1 [ » —4py — 8q1 = 4ipy
=4 = . .
( 4 4 )(fh) Z((h) Apr +4q1 = diqy

This gives ¢ = —%pl so that the corresponding eigenvector can be chosen, for
example, as u; = _12_ . We can immediately conclude that the eigenvector
corresponding to Ao = —4¢ can be chosen in the complex conjugate form u, =
( —12+i ) Finally, the general solution to the system of ODEs can be written in
the form

Y1 . 44t 2 —4it 2
(1) -cen( 2 ) verm(22)

or in components
yl(t) = 201€4it + 2026_4“ , y2<t> — (_1 _ 7:)0164“ + (_1 + ,L~>C2€—4it '

For the initial conditions y;(0) = a and y(0) = b, where (a,b) can be any point in
the phase plane

yl(()) = Cl + 02 = CL/2 s yg(O) = —1(01 + CQ) + (Cg — Cl)l =b

a 2b+a
= (1 =-
1=t

a_2b+a
4 4

1, Uy = z,

4



Thus the solution to this IVP will be

2b ; 2b ,
yi(t) = 2(g + i ai)e4” + 2(g s ai)e’m =acosdt — (2b+ a)sin4t,
4 4 4 4
2b , 2b .
y2(t) = (—1—2’)(%—1—#i)e‘*“—l—(—l—i—i)(g—ﬁi)e4” = (b+a)sindt+bcos4t.

4 4

As the phase portrait is a centre. If we plot one ellipse (one trajectory), then all
other trajectories are just a set of nested ellipses around the equilibrium point in
this linear system (0,0). Thus, pick any values for (a,b), e.g. (1,0), the solution to
this IVP becomes

y1(t) = cos4dt — sin4t,

Yo(t) = sin4t.

You can plot the ellipse by chose t=0, 7%, %, %’ ?—g, ?—g..., which is the black ellipse

in the Figure 4. Then you draw rest trajectories accordingly.

Figure 4: The phase portrait for problem B3) featuring a center.

If you transform the y;y, coordinates to new coordinates as described in our lecture, the
trajectories will becomes counterclockwise circles around (0, 0).

C. Determine the type of fixed point for the dynamical systems

?jl = 4y2 s ?jQ = —U-

Then determine the solutions of the corresponding initial value problems for the general initial
conditions 41 (0) = a,y2(0) = b. Finally sketch the phase portraits in the (y1,y2) phase plane.

Solution. The matrix associated with this system is given by A = ( 0 4 ) The

-1 0

characteristic equation is A2 44 = 0 with two complex conjugate roots A\; = 2i, Ay = —2i.
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As the eigenvalues are complex conjugate and their real parts equal to zero,
the corresponding fixed point is a center.
The eigenvector corresponding to A\; = 2¢ can be found from

0 4\ m (D1 ¢
:2 , = = —
(—1 0)(@1) Z(m) hTah

. 1 1 :
so that the eigenvectors are u; = ( i ) and uy = < ; ) The general solution has
2

(yl ) :Cle2it< .
Y2

The initial conditions yield

the form

D[ =t
N——
+
2
o

v
VRS
|
N |
N——

i 1 , 1 .
y1(0) =Cr +Cy =a, y2(0) = 5(01 —C2)=b= Ci1= 5(61 —2ib), Cy = §(a +2ib)ys =
so that the solution to the general initial value problem is given by
1 1 .
Yy = E(a — 2ib)e* + é(a + 2ib)e ?" = acos 2t + 2bsin 2t,

and similarly

Yo = ;l(a — 2ib)e*" — Z(a + 2ib)e " = —g sin 2t + b cos 2t .
We notice that y? + 4y3 = a® + 4b* describing ellipses in phase space. The check the
direction of the trajectories (arrows), we can pick up any initial point, for example,

. 1n(0) ) ( y1(0) )
0) =1,42(0) = 0, then the tangent vector at this point is | =A =
1(0) = 1,32(0) g point is (210 ne

4 1 . . .
( _01 0 ) ( 0 ) = ( _01 ) Thus the trajectory starting at (1,0) will move towards
negative y values (clockwise).

Note the trajectories here are clockwise as it is in the original y,y> coordi-
nates. If you transform the y,y, coordinates to new coordinates as described
in our lecture, the trajectories will becomes counterclockwise circles around

(0,0).

Figure 5: Phase portrait for problem C featuring a centre.



II. Homework

A. Determine the solution of the initial value problem

1= —4y2, Yo=4y1+y2, 11(0) =0, 12(0) =1,¢t>0

and the type of fixed point. Then sketch the trajectory in the (1, y2) phase plane correspond-
ing to the chosen initial values in the specified range of ¢.

Solution. The matrix associated with the system is given by A = < le _14 > The

characteristic equation is A2 — 2\ + 17 = 0 with two complex conjugate roots A\; = 1 + 44,
Ao = 1 — 44. The eigenvector corresponding to Ay = 1 + 4¢ can be found from

(1) (z)-0w(z) = vem

so that the eigenvectors are u; = ( _11 ) and up = ( 1 ) The general solution has the

< N ) :Clet+4it< 1‘ ) +026t—4it( 1 ) '
Y2 —1 ?

The initial conditions yield

form

y1(0)201+02:0, y2(0)201<—l)+02121, = 01: ,02:—

N | .

so that the solution to the general initial value problem is given by

1 TR Ry :
Y = _et+4zt _ _et dit _ _et gin 4t
2 2
and similarly
i, T Y
Yo = 5(—@)6“'4” - Ezet Yt — el cos 4t .

The fixed point is an unstable focus and trajectories are spiraling away from the origin
for t — oo. For the specified initial conditions the initial tangent vector to the trajectory
is 41(0) = —4,92(0) = 1 so that the rotation goes anticlockwise; see the sketch below.

I1I. Applications involving Dynamical Systems

A. Using the relation between charge and current given by I = d(@Q)/dt, rewrite the following

dl 1
L— + RI+—=0Q = E(t
a T e = B0
as a second order equation in the charge Q. Use this to obtain an ODE for the current I as
d*I ar 1 .
L— —+ =1 =FE(t).
i T Tl =0
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Figure 6: The trajectory solving this initial value problem) with an unstable focus.

Solution. Let differentiation with respect to ¢ be denoted by a dot (Newton’s notation
for independent variable as time t). Then we have I = @ and consequently, I = Q). The
given equation can be rewritten in terms of ) as

dl

1 . 1 .. ) 1
E(t)_La+RI+5Q_L1+RI+5Q_LQ+RQ+5Q,

which is a second-order equation in Q).
We can either differentiating this 2nd-order ODE or the original 1st-order ODE over
t, and using the fact that () = I, we obtain

.1 . . |
LQ +RQ+ 5Q=LI+ RI + =1 = E(1),

which is a second order equation in /.



B. Assuming the system is closed and E(t) = 0, write the second order equation in [ as a
system of two first order equations using y; = I and y = dI/dt. Show that y; =0, yo =0 is
a critical point.

Solution. Given E(t) = 0, we have LI+ Rf—k%] = 0. Following the suggested definitions
for x and y,

. -1 .1 1 1
— = =—(-Ri— =) == (—-Ry——=z).
Y2 = U L(R C’) L(Ry Ox)

Rewriting the equation as a linear system, we find

(2)-(% (%)

We immediately see that (z,y) = (0,0) is a critical point of the system since both the left
and right hand sides vanish for this solution.



