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Formative Assessment Week 5 — Selected Solutions G. Bianconi

I. Practice Problems

A. Consider the initial value problem (IVP) y' = 1y~ (y € R), y(0) = 0.

1) Use the Picard-Lindel6f Theorem to justify existence and uniqueness of the solution
to this ODE (without exhibiting the solution)

2) Now solve the IVP. Find and sketch all possible solutions if the solution is not
unique.

5) Change the initial condition to y(0) = b where b # 0, graph the solution of this new
IVP.

Solution: (1) Since the right hand side of the ODE is %yil, which is not bounded in
any rectangular space around an initial point at y = 0 (including y(0) = 0), thus the first
condition of Picard-Lindelof theorem is validated. There is no unique solution to this IVP.

(2)The ODE 3y’ = 4y~! can be solved by separation of variables, which gives two so-

lutions y(z) = Vo + C and y(x) = —v/z + C, where x € [¢, +0o0]. For y(0) = 0, we have
C = 0, thus the IVP has two solutions, y; () = v/ and ya(x) = —y/x, where z € [0, +00],
which can be sketched in the xy-plane as follow Note any IVP as y(a) = 0, where the
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initial condition corresponds to one point in the line y = 0, will have two solutions as the
case for y(0) = 0.

(3) The initial condition y(0) = b(b # 0), leads to C' = b?. And if b > 0, the solution is
y(x) = Vo + b2 Otherwise, if b < 0, y(z) = —vx + b?. We can sketch the solutions as
above. From the above graph, or from the Picard-Lindelof Theorem, we can always find
a rectangular space where the IVP with y(0) = b(b # 0) has one unique solution.

B. Assuming = > 0 write down the general solutions to the Euler-type equations

(1) P ]
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Solution: According to the general method of solving Euler-type equations we introduce

the new variable z = ¢’ and the new function z(t) so that

dz d?z
2(t) = 6t7 = _:et/’ _:etl+e2t//
() = y(e") =Y T2 = ey y
From the above we find correspondingly that ¢’ = e 'z, 3/ = e 2(3 — 2). Substituting
to the Euler-type equation reduces the latter to a homogeneous equation with constant

coefficients.

Performing the above substitutions gives in this case the equation with constant coeffi-
cients
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The corresponding characteristic equation is A2 —5A+6 = 0 with the two real roots \; = 2
and )y = 3 so that the general solution is z(t) = c;e* + cpe. The original function y(z)
is recvovered by replacing ¢t = In x, so that e* = 22, ¢3! = 23. Finally the general solution

to the original Euler equation is given by

yn(x) = c12® + coz® .

()

o2y —axy —3y=0.

Solution: Introducing the new variable by z = e so that y(z) — 2(¢) and
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dr Cdt w2 ¢ |

gives the equation with constant coefficients
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The corresponding characteristic equation is A> — 2\ — 3 = 0 with the two real roots
A1 = —1 and Ay = 3 so that the general solution is z,(t) = c;e™" + coe®’. Remembering
that t = Inz so that e! = x gives e™! = 1/x, €3 = 23 so that finally the general solution
to the original Euler equation is given by

yn(z) =c1/x + cox’ .

C. Find the general solutions of the second order inhomogeneous differential equations:

1) v’ + 6y’ + 8y = —3e~": The characteristic equation is A\? + 6\ + 8 = 0 which has
two real roots: \; = —2 and A\ = —4. The general solution to the homogeneous
equation is given by y,(z) = c1e72* +ce 4%, Since the function e~ is not a solution
to the homogeneous equation, we may use the educated guess method and look for
the particular solution of the inhomogeneous equation in the form y,(x) = dpe™".
Substituting this back into the inhomogeneous equation gives on the left-hand side
e *dy(1 —6+48) = 3dpe™* so that to match to the right-hand side we should choose
dy = —1, hence y,(x) = —e™*. Finally, the general solution to the inhomogeneous
equation is given by

Yo(x) = yn(x) + yp(2) = cre™> + cre™™ — ™"

2) 3" + Ty’ + 6y = 10sin 22: The characteristic equation is A + 7\ + 6 = 0 which has
two real roots: A\; = —1 and A\ = —6. The general solution to the homogeneous
equation is given by yn(z) = c1e™® + cee %, Since the function sin2x is not a
solution to the homogeneous equation, we may use the educated guess method
and look for the particular solution of the inhomogeneous equation in the form
Yp(z) = Asin2x + Bcos2r, hence y, = 2Acos2x — 2Bsin2z and y; = —4y,.
Substituting this back into the inhomogeneous equation gives on the left-hand side

—4(Asin 2z + Bcos2x) + 7 (2A cos 2z — 2B sin 2z) + 6(Asin 2z + B cos 2z)

= (2A — 14B)sin2z + (2B + 14A) cos 2z

so that to match to the right-hand side we should choose 24 — 14B = 10, 2B +
144 = 0 so that A = 1/10, B = —7/10 and y,(z) = 5 (sin 2z — 7 cos 2z). Finally,
the general solution to the inhomogeneous equation is given by the sum

1
Yy (1) = cre™ + cpe ™% + 1—O(Sin 2x — T cos2x)
Note that this differs from the two educated guess cases in the typed lecture notes.

More specifically, although the roots of the characteristic equations in this example
are real and the f(x) has the form of sines, the educated guess still works.

D. Solve the following initial value problem:



y'+4y +5y=1-5z, y(0)=0,¢(0)=-1

Solution: The characteristic equation is A*> + 4\ + 5 = 0 which has two complex
conjugate roots: Ay = —2 4+ 17 and Ay = —2 — 7. The general solution to the
homogeneous equation is given by y;(z) = ¢ %* (¢, cosx + ¢y sinw). Since the right-
hand side in the inhomogeneous equation is a polynomial, we may use the educated
guess method and look for the particular solution of the inhomogeneous equation in
the form y,(z) = dy + dyx. Substituting this back into the inhomogeneous equation
gives on the left-hand side 4d; + 5(dy + dix) = (4dy + 5dy) + 5dix so that to
match to the right-hand side we should choose 4d; + 5dy = 1, 5d; = —5, hence
Yn(x) = 1 — . Finally, the general solution to the inhomogeneous equation is given
by y,(x) = €72 (¢1 cosz + casinz) + 1 — z so that

—2x(

Yo (r) = e **(—cysine + cycos ) — 2¢ % (cy cosw + cysinw) — 1

implying
y(O):Cl+1:07 y,(0)202_2cl_1:_17 :>61:_1762:_2

Thus, the solution to this IVP is, y(x)=y,(x) = e ?*(—cosx — 2sinz) + 1 — .

E. Find the general solution of the second-order inhomogeneous differential equation

y'+ 3y +2y=e*cosx.

Note:

e cos fxdr = %ﬂzea‘” <sin Bx + %COS Bx) , £ +if,

whereas for v = 443 it holds

/ et cos frdr = = —|— sin 28x F — cos 23 .
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Solution: The characteristic equation is A>4+3\+2 = 0 with two real roots \; = —1, Ay =
—2 so0 the general solution of the homogeneous equation is yy,(r) = c1e™® +coe™2®. As the
right-hand side is not in the form allowing an educated guess we will look for a particular
solution y,(x) as given by the variation of parameter method. As Ay — Ay = 1 we have

Yp(z) =€e™° / e“e " cosw dr—e " / e cosxdr =e " / e " cosxdr—e / cos x dz,

where [ coszdzr = sinz and using the formula provided

1 :
/6_“’ cosx = Ee_’”(smx —cosx)



giving
1
Yp() = 56

Finally, the general the solution of the inhomogeneous differential equation is given by

—230( 2 —29[:(

: _9r . 1 :
sinx —cosz) —e “Fsinx = —g¢ (sinz +cosz) .

1
2z _67293(

Yg(x) = cre”® + coe” sinz + cos ) .

II. Homework Problems

Solutions will be discussed in Week 10, session 4 (see module session schedule in Qm-
plus as well).

III. Checking Detalils

We consider a problem of great importance for applications: the motion of a mass at-
tached to an elastic string under the influence of a periodic driving force, which we have
discussed in the lecture (Week 1 ) about Newton’s Second Law.

Motion under periodic driving force and the resonance phenomenon

We consider differential equations for functions y(¢) of an independent variable time
t € [0,00). Let us recall that for a point mass m moving along a vertical coordinate
y under the influence of a force f Newton’s Second Law is mass x acceleration = force.
This yields a second-order differential equation

mij = f(t,y),

where we will assume for simplicity that there is no friction in the system. Thus, the force
f depends on time and position but not on velocity 3. To uniquely determine the motion
of this system one has to specify initial conditions, which here are the initial value of the
coordinate y(t = 0) = yo and the value of initial speed (velocity) g(t = 0) = vy. The
simplest system of this type is represented by a point mass m attached to the loose end of
an elastic spring of length [, with the other end of the spring fixed to a ceiling; see Fig. 1.
To keep our considerations as simple as possible we also neglect any additional external
driving force acting on the mass. Measuring the coordinate y from the ceiling down-
wards, the mass is then subject to a force equal to the sum of only two contributions: the
position-independent gravity force f, = mg and the position dependent elastic force
feo = —k(y — 1) (Hooke’s law of elasticity).

Question: Using the constant parameters k,m, g, [, write down the second ODE lin-
ear ODE of the position of the point mass y over time ¢ for the above system. Find the



Figure 1: Sketch of a spring-mass system.

general solution to this ODE, and the solution to the IVP with the initial position and
speed at t = 0 as y(0) = yo, y(0) = 0. Here, yo is a given constant number.

(Hint: you first need to identify the focus variable, and independent variable. The
ODE can be solved by second order linear ODE methods.)

Solution: Equation

mij = f(t,y),
together with the respective initial conditions takes now the form (after division by m)
Jj=g— %(y —0),y(t=0)=yo, y(t =0) =0, where g is the gravitational acceleration
and £ is the spring constant depending on the spring’s material.

Note this is a inhomogenous second order linear ODE with constant coefficients, be-
cause we can reorganise our equation as g+ %y =g+ %l . We can directly solve this ODE
by educated guess method or variation of parameter method.

However, it is convenient to introduce the new coordinate z = y—y., where y, = [+72.
The value y, can be found by setting g — %(y — 1) = 0. Thus, the right-hand side of the
ODE y = g — %(y — 1) vanish. This means that by choosing the initial position of the
mass such that yo = v, if the initial speed (velocity) is zero and there is no driving force
the mass will stay forever in this position.

In the new coordinate z reads
j=% and j=g-—(y-)=9g-—(E+yp-1)=-—=2.
m m m

After introducing the notation w = \/g (known as the eigenfrequency of the system), we
can rewrite our IVP, § = g — £(y — 1), y(0) = yo ,(0) = 0 in the form
P4t w?z=0,2(0)=2,20)=0.

Again this is of the form of a standard homogenous second order ODE with constant
coefficients. The associated characteristic equation is A\?> + w? = 0, which has two
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purely imaginary complex conjugate roots, A\; = iw, Ay = —iw. We then have z,(t) =
C cos(wt) + Cysin(wt). According, the general solution to the original ODE is yy(z) =
25(t)+y. = Cy cos(wt)+Cy sin(wt)+1+72. Using the initial conditions z(0) = 2, £2(0) = 0,
we have (7 = 2y and Cy = 0, the solution to the I.V.P in the new coordinate is
zp(t) = zocos(wt).

The special solution to the IVP in the original coordinate with y(0) = yo,9(0) = 0 is
y(z) = (yo — 1+ 72)cos(wt). Recovering our previous statement, if the mass starts in the
position yo = [ + %2, y(z) = 0 which means the mass will stay forever in this position.



