
MTH5123 Differential Equations

Lecture Notes

Week 11

School of Mathematical Sciences

Queen Mary University of London

Autumn 2021



5 Stability of Solutions of ODEs

The subject of stability studies is to understand how a change of initial conditions or a
change in parameter values of equations defining a dynamical system (e.g., coefficients in
front of derivatives) affects the behaviour of the solutions, especially when the indepen-
dent variable (usually interpreted as time t) tends to infinity, t → ∞. The main goal is
to establish criteria ensuring that the solution will change only slightly if a small (in an
appropriate sense) change in the initial conditions or parameters is implemented. This type
of question is of great importance for practical applications, as parameters of differential
equations which govern real-life processes as, e.g., the functioning of mechanical aggregates
or electronic devices, are known only approximately due to unpredictable changes in tem-
perature, humidity or other properties of the environment. We will only discuss the stability
of solutions of systems of two coupled first-order ODEs, but the basic ideas can be extended
to any number of equations.
As usual we will use vector notation by writing down a system of two general non-autonomous
ODEs in normal form as

ẏ = f(t,y) , y =

(
y1
y2

)
, f =

(
f1(t, y1, y2)
f2(t, y1, y2)

)
. (5.1)

Stability theory is mainly based on the following two definitions:

Definition: Lyapunov stability

A solution y∗(t) of (5.1) corresponding to the initial condition y∗(0) = a1 =

(
a1
b1

)
is called

Lyapunov stable (or simply stable) if for any (arbitrarily small) ε > 0 we can find a δ > 0

such that if another initial condition y(0) = a2 =

(
a2
b2

)
is chosen inside a circle of radius

δ around the initial point y∗(0) then for any time t > 0 the solution y(t) corresponding to
the initial condition y(0)

1. exists, and

2. will stay inside a ”tube” of radius ε around the solution y∗(t), see Fig. (5.1).

In mathematical shortcut notation this definition reads

∀ε > 0 ∃δ > 0 s.t. ∀t > 0 |y(0)− y∗(0)| < δ ⇒ |y(t)− y∗(t)| < ε .

Definition: asymptotic stability
The solution y∗(t) of (5.1) corresponding to the initial condition y∗(0) = a is called asymp-
totically stable if it is

1. Lyapunov stable, and
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Figure 5.1: A sketch of the stability tube according to the definition of Lyapunov stability.
y

2. there exists a δ > 0 such that the condition |y(0)−y∗(0)| < δ implies |y(t)−y∗(t)| → 0
for t→∞.

y

Note:
1. Conditions 1. and 2. are independent, i.e., neither does 1. imply 2., nor does 2. imply 1.
For the first direction see the counterexample below; the second direction is less obvious,
but there are also counterexamples.
2. Making in (5.1) the change of variables z(t) ≡ y(t)−y∗(t) one can show that investigating
the stability of any solution y∗(t) of the system (5.1) can always be reduced to investigating
the stability of the zero solution z(t) = 0 of the transformed system ż = f(t, z); see our
previous discussion at the beginning of Section 4.1.1.

Reformulating the definition of (Lyapunov) stability in terms of z(t) we arrive at the fol-
lowing expression: Stability of the zero solution z = 0, i.e., of the fixed point at z = 0,
means that for any ε > 0 we can find a δ > 0 such that ∀t > 0 |z(0)| < δ implies |z(t)| < ε.
The definition of asymptotic stability can be reformulated accordingly. From now on we
will concentrate on stability of the zero solution only.

Example:

Is the zero solution

(
y1
y2

)
=

(
0
0

)
of the system ẏ1 = −4y2, ẏ2 = y1 (Lyapunov) stable?

Is it asymptotically stable?

Solution:

The system can be written as ẏ = Ay with A =

(
0 −4
1 0

)
. The eigenvalues are purely

imaginary, λ1 = 2i, λ2 = −2i, and the associated eigenvectors are u1,2 =

(
2
∓i

)
. According

to (4.19) the general solution of this system is given by

y(t) = c1e
2it

(
2
−i

)
+ c2e

−2it

(
2
i

)
.
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Determining the two constants c1, c2 by imposing the initial conditions y1(0) = a, y2(0) = b
and expressing the solution in terms of real functions yields

y1(t) = a cos (2t)− 2b sin (2t) , y2(t) =
a

2
sin (2t) + b cos (2t) .

As we have seen before, trajectories of this type are ellipses, y21 + 4y22 = a2 + 4b2. But this
implies: Given any ε > 0 let us choose δ = ε/2. Then by choosing the initial conditions
(a, b) to be inside a circle of radius δ, that is, a2 + b2 < δ2 = ε2/4, we find that y2(t) =
y21 + y22 < y21 + 4y22 = a2 + 4b2 < 4(a2 + b2) < ε2, hence |y| =

√
y21 + y22 < ε for any time t.

We have thus shown that the zero solution y1 = y2 = 0 is Lyapunov stable. However, it is
not asymptotically stable, as each solution rotates around its ellipse without approaching
the origin for t→∞, see Fig. 5.

Figure 5.2: Sketch of the stability of the zero solution for elliptic trajectories providing an
example that Lyapunov stability does not imply asymptotic stability.

5.1 Stability criteria for systems of two first-order linear
ODEs with constant coefficents

Our goal is to formulate the stability conditions for the fixed point at y1 = y2 = 0 of any
system of the form (

ẏ1
ẏ2

)
= A

(
y1
y2

)
, (5.2)

where the matrix A is time independent. We will furthermore assume that A is characterized
by distinct eigenvalues λ1 6= λ2. One can then prove the following statement:

Theorem:
Define s ≡ max {Reλ1, Reλ2}. Then the zero solution y = 0 of (5.2) is

1. unstable for s > 0,

2. stable for s = 0, and

3. asymptotically stable for s < 0.
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Instead of providing a proof we just outline the basic idea of it: If s > 0 then est →∞ for
t → +∞. Hence at least one of the factors |eλ1t|, |eλ2t| (or both) grows without bound in
time, and the modulus of the solution must increase as well implying instability. Similarly, if
s < 0 then est → 0 for t→ +∞ implying that both |eλ1t|, |eλ2t| → 0 as t→∞. This means
that the modulus of the solution must vanish asymptotically for t → ∞ so that system is
asymptotically stable. Finally, for s = 0 the eigenvalues are purely imaginary and complex
conjugate. We know that in this case the trajectories are ellipses that neither approach zero
nor go to infinity. Instead, they remain at a finite distance from the origin, hence this case
is stable but not asymptotically stable. For a proof these ideas need to be formalized in
terms of equations by starting from the general solution (4.19) for the general initial value
problem y1(0) = a, y2(0) = b.

Note:

Although we considered only the case of distinct eigenvalues λ1 6= λ2 the theorem can be
generalized to λ1 = λ2 = λ showing that also in this case the zero solution is unstable for
λ > 0, stable for λ = 0 and asymptotically stable for λ < 0.

5.2 Lyapunov function method for investigating stability

Consider again the general system of two first order ODEs written in normal form (5.1).
Suppose that y(t) is a solution of (5.1). Then for any continuously differentiable function
V (y) defined on the same domain as y(t) one can define its values at any moment of time
t on the solution y(t) as v(t) ≡ V (y1(t), y2(t)). We will need the expression for the time
derivative v̇ = dv

dt
of such a function, which by using the chain rule of differentiation can be

obtained to

v̇ =
∂V

∂y1
ẏ1 +

∂V

∂y2
ẏ2 . (5.3)

Using (5.1) in the form of ẏ1 = f1(t, y1, y2), ẏ2 = f2(t, y1, y2) we obtain

v̇ =
∂V

∂y1
f1(t, y1, y2) +

∂V

∂y2
f2(t, y1, y2) ≡ Df (V ) , (5.4)

where we introduced the notation Df (V ). In Calculus II you have learned that this equation
defines the directional derivative of V along f . Within our specific context, the above
expression is called the orbital derivative. Note that Df (V ) is determined for any value
of y solely by the functional form of V (y) and the form of the right-hand side of the system
(5.1) without the need to know the explicit solution of the latter system.

Df (V ) can be used to formulate the following statement, which we give without proof:

Theorem: Lyapunov Stability Theorem

Let y(t) = 0 be a solution of (5.1) and assume that inside the circle 0 < |y| < R there exists
a continuously differentiable function V (y) satisfying

1. V (y = 0) = 0

2. V (y 6= 0) > 0

3. The derivative of V along f is non-positive, Df (V ) ≤ 0 for (y1, y2) 6= (0, 0).
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Then the zero solution y(t) = 0 is stable.

The function V (y) featuring in this theorem is called the Lyapunov function of the system
(5.1). While such a function can be found for certain classes of differential equations, see the
following example, unfortunately there does not exist a systematic way of how to construct
it for a given system of differential equations.

Note:
If the third condition is replaced by Df (V ) < 0 being strictly negative one can prove that the
zero solution y(t) = 0 is asymptotically stable, which is called the Lyapunov Asymp-
totic Stability Theorem.

Example:
Verify that the function V (y1, y2) = y21 + y22 is a valid Lyapunov function for the system

ẏ1 = −y2 − y31 , ẏ2 = y1 − y32 .

Is the zero solution asymptotically stable?

Solution:
V (y1, y2) satisfies the first and the second condition in the Lyapunov Stability Theorem.
For any (y1, y2) 6= (0, 0) we have

Df (V ) =
∂V

∂x
ẏ1 +

∂V

∂y
ẏ2 = 2y1

(
−y2 − y31

)
+ 2y2(y1 − y32) = −2(y41 + y42) < 0

so that the zero solution is not only stable but even asymptotically stable.
The Lyapunov function method enables to investigate the stability of whole classes of sys-
tems of ODEs. For example, along these lines one can prove the following important gener-
alization of the theorem on p.4, which we state without proof:

Theorem:
Let us consider a nonlinear system of two ODEs of the form(

ẏ1
ẏ2

)
= A

(
y1
y2

)
+ higher order nonlinear terms , (5.5)

where the matrix A is time independent and characterized by the two eigenvalues λ1, λ2.
Then

1. if both Reλ1 < 0 and Reλ2 < 0 then the zero solution of (5.5) is asymptotically stable.

2. If at least one of Reλ1, Reλ2 is positive then the zero solution of (5.5) is unstable.

3. If max{Reλ1, Reλ2} = 0 then the stability of the zero solution is determined not only
by A but also by the properties of the nonlinear terms, i.e., the zero solution may be
stable for some nonlinear terms but unstable for others.

Note:
The third case implies that linear stability analysis does not work ifmax{Reλ1, Reλ2} =
0.
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Example:
Determine the maximal range of the values of the parameter a for which the zero solution
of the system

ẏ1 = y1 + (2− a)y2, ẏ2 = ay1 − 3y2 + (a2 − 2a− 3)y21

is (i) unstable, (ii) stable.

Solution:
The linear part of the system is obtained by simply discarding the nonlinear terms in the
second equation, as can be verified by Taylor expansion. Hence it is described by the matrix

A =

(
1 2− a
a −3

)
whose characteristic equation is λ2 + 2λ + (a2 − 2a − 3) = 0. The two

roots are given by

λ1 = −1 +
√
−a2 + 2a+ 4 , λ2 = −1−

√
−a2 + 2a+ 4 .

If the two roots are complex conjugate we have Re{λ1,2} = −1 < 0, hence the zero solution is
asymptotically stable. We conclude that an instability may occur only for values of a where
both roots are real and λ1 > 0. This implies

√
−a2 + 2a+ 4 > 1 so that −a2 + 2a + 4 > 1

or equivalently
a2 − 2a− 3 = (a+ 1)(a− 3) < 0 ,

hence −1 < a < 3. Thus for a ∈ (−1, 3) the zero solution is unstable. Correspondingly, for
a < −1 or a > 3 the zero solution must be asymptotically stable. For a = −1 or a = 3
we have λ1 = 0 while λ2 = −2 < 0. Therefore in this case the situation depends on the
nonlinear terms. But precisely for these parameter values of a the nonlinear term in our
original system vanishes, due to a2 − 2a − 3 = 0. The system thus becomes linear with
eigenvalues λ1 = 0, λ2 = −2, hence by our theorem on page 4 of this document for a = −1, 3
the zero solution is stable but not asymptotically stable.
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