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3 Boundary Value Problems for
second-order Linear ODEs

3.1 Definition of B.V.P

So far we have considered the initial value problem for second order ODEs

a2(x)y′′ + a1(x)y′ + a0(x)y = f(x) (3.1)

by specifying two conditions for the function y(x) and its derivative at one and the same
value of the independent variable x = a (or, if the independent variable was interpreted as
time t, the conditions were specified at t = a). We will always assume that all the coefficients
a0(x), a1(x), a2(x) and the function f(x) are continuous in some interval [x1, x2], and a2(x) 6=
0 in that interval. As we have discussed at the beginning of Section 2.1, according to the
generalised Picard-Lindelöf Theorem any Initial Value Problem y(a) = b, y′(a) = b1 for
a ∈ [x1, x2] has one and only one solution in the interval [x1, x2].
In this section we are going to consider the different situation when some conditions are
specified at the endpoints, or boundaries, of an interval of the independent variable, that
is, at x = x1 and x = x2 with x1 < x2. This problem is known as a Boundary Value
Problem and the conditions are called boundary conditions. We are then interested in
finding the solution y(x) to a given ODE (which we consider to be linear) inside the interval
x1 ≤ x ≤ x2.

3.1.1 Linear Boundary Conditions

We will consider only linear boundary conditions, where the left-hand sides of the conditions
are linear combinations of the function and its derivatives at the same point and the right-
hand sides are given constants, for example

y(x1) = b1 , y(x2) = b2 or y′(x1) = b1 , y
′(x2) = b2 ,

or most generally
αy′(x1) + βy(x1) = b1 , γy

′(x2) + δy(x2) = b2 , (3.2)

where α, β, γ, δ are given real constants such that |α|+ |β| > 0, |γ|+ |δ| > 0.
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3.1.2 Homogeneous Boundary Value Problem

If the constants b1, b2 on the right-hand side are equal to zero, the corresponding boundary
condition is called homogeneous, otherwise it is inhomogeneous. If all boundary condi-
tions are homogeneous and the ODE itself is also homogeneous, the corresponding boundary
value problem is called homogeneous as well.

Example:
Consider the B.V.P.

y′′ + y = f(x) , y(0) = 0 , y′(π) = 0 .

Write down the general solution of the above ODE for the special choice f(x) = ex and use
it to solve the corresponding B.V.P.

Solution:
The characteristic equation λ2 + 1 = 0 has two complex conjugate roots λ1 = −i, λ2 = i so
that the general solution of the homogeneous equation can be written as

yh(x) = c1 cosx+ c2 sinx .

A particular solution for the special choice f(x) = ex can be found by the variation of
parameter method where

yp(x) =
1

(λ1 − λ2)a2

{
eλ1x

∫
f(x)e−λ1xdx− eλ2x

∫
f(x)e−λ2xdx

}
=

1

(i+ i) ∗ 1

{
eix
∫
exe−ixdx− e−ix

∫
exeixdx

}
=

1

(i+ i) ∗ 1

{
eix
∫
e(1−i)xdx− e−ix

∫
e(1+i)xdx

}
=

1

(i+ i) ∗ 1

{
eixe(1−i)x

1

1− i
− e−ixe(1+i)x 1

1 + i

}
=
ex

2i

(
1

1− i
− 1

1 + i

)
=
ex

2i

1 + i− (1− i)
1− i2

=
ex

2

Hence, the general solution to the inhomogeneous equation is given by

yg(x) = c1 cosx+ c2 sinx+
1

2
ex .

Differentiating yields

y′g(x) = −c1 sinx+ c2 cosx+
1

2
ex .

Combining these two equations with the boundary conditions leads to

y(0) = c1 +
1

2
= 0 , y′(π) = −c2 +

1

2
eπ = 0 ,

which gives c1 = −1/2 and c2 = 1
2
eπ. The solution to the B.V.P. is thus given by

y(x) =
1

2
(− cosx+ eπ sinx+ ex) .
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3.2 Existence and uniqueness of solutions to B.V.P.

The main difference between a Boundary Value Problem (B.V.P.) and an Initial Value Prob-
lem is that the B.V.P. may have (i) no solution, (ii) a unique solution or (iii) infinitely many
solutions.

Example:

1. B.V.P. y′′+y = 0 , y(0) = 0 , y(π) = 1 does not have any solution, since all solutions
satisfying y(0) = 0 necessarily have the form y(x) = c sinx for some c, and they all
vanish at x = π.

2. B.V.P. y′′ + y = 0 , y(0) = 0 , y(π) = 0 has infinitely many solutions y(x) = c sinx
for any choice of c.

3. B.V.P. y′′+ y = 0 , y(0) = 1 , y(π/2) = 1 has the unique solution y(x) = cos x+ sin x.

This general situation is explained by the following

3.2.1 Theorem of the Alternative

Theorem: Consider the Boundary Value Problem for the second order ODE (3.1), where
all functions a0(x), a1(x), a2(x) and f(x) are continuous, a2(x) 6= 0, and all boundary con-
ditions are linear and given by (3.2). Only two alternative situations are possible:

1. Either the B.V.P. has a unique solution for any f(x) and any values b1 and b2 of
the right-hand sides in the boundary conditions (3.2), or

2. the corresponding homogeneous problem has infinitely many solutions, and the
inhomogenous problem has infinitely many solutions for some choices of f(x) and
right-hand sides in the boundary conditions, and for other choices does not have
solutions at all.

3.2.1.1 Applications of this theorem

(a) the homogeneous B.V.P. has only the trivial zero solution
⇒ the inhomogeneous B.V.P. has only one solution for any right-hand side

(b) the homogeneous B.V.P. has at least one non-zero solution
⇒ the inhomogeneous B.V.P. has either infinitely many solutions or none

Example:

Find the smallest positive value of the parameter b > 0 such that the B.V.P.

y′′ + b2y = 0, y(0) = 5 , y(1) = −5

does not have any solution.
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Solution:

According to the Theorem of the Alternative the above inhomogeneous problem may
not have a solution only if the corresponding homogeneous problem

y′′ + b2y = 0 , y(0) = 0 , y(1) = 0

does have a non-zero solution. We know that solutions of y′′ + b2y = 0 must have
the form y(x) = A sin (bx) +B cos (bx). The first boundary condition y(0) = 0 selects
B = 0, so we must have y(x) = A sin (bx). The second boundary condition yields
y(1) = A sin (b) = 0 and together with b > 0 selects the values b = π, 2π, 3π, . . ..
For these values the homogeneous problem has a nonzero solution (for example, for
b = π the solution is y(x) = A sin (πx)∀A 6= 0), so we have the second alternative:
Either the original inhomogeneous problem has infinitely many solutions, or none at
all. Which of these two cases occurs has to be checked case by case by inspecting the
corresponding inhomogeneous problem.

Consider first b = π so that the general solution of the inhomogeneous problem is
y(x) = A sin (πx) + B cos (πx). The condition y(0) = 5 yields B = 5, and now
y(1) = A sin π + 5 cosπ = −5 for any choice of A. Thus for b = π the B.V.P. has
infinitely many solutions of the form y(x) = A sin (πx) + 5 cos (πx).

Now consider b = 2π for which the solution of the inhomogeneous problem must be
of the form y(x) = A sin (2πx) + B cos (2πx). Then y(0) = B = 5, but in this case
we necessarily have y(1) = A sin (2π) + 5 cos (2π) = 5 in contradiction to the second
boundary condition. This implies that the boundary value problem does not have
any solution. We conclude that b = 2π is the required minimal positive value of the
parameter b.

3.2.1.2 Proof of this theorem

* This proof is not covered by the lectures and is not examinable (from now until the
end of the proof). It is left for students who are interested to work themselves through
more mathematical details.

We will provide a proof only in the simplest case of ODEs with constant coefficients
on the left-hand side,

a2(x) = a2 , a1(x) = a1 , a0(x) = a0 ∀x ∈ [x1, x2] .

We furthermore suppose for simplicity that the associated characteristic equation
a2λ

2 + a1λ + a0 = 0 has only distinct real roots λ1 6= λ2. In this case we know
that the general solution yg(x) of the inhomogeneous equation (given by the sum of
the general solution of the homogeneous equation yh(x) and any particular solution of
the inhomogeneous equation yp(x)) can be written as

yg(x) = c1e
λ1x + c2e

λ2x + yp(x) (3.3)
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with constants c1, c2. Now we should fix these constants by satisfying the linear bound-
ary conditions (3.2). Substituting the solution (3.3) into these boundary conditions
and shifting the yp-dependent terms onto the right-hand side we get a system of two
linear algebraic equations for the coefficients c1, c2.

For example, the boundary condition αy′(x1) + βy(x1) = b1 yields

α
(
c1λ1e

λ1x1 + c2λ2e
λ2x1 + y′p(x1)

)
+ β

(
c1e

λ1x1 + c2e
λ2x1 + yp(x1)

)
= b1

or equivalently, after rearranging,(
βeλ1x1 + αλ1e

λ1x1
)
c1 +

(
βeλ2x1 + αλ2e

λ2x1
)
c2 = b1 − βyp(x1)− αy′p(x1) . (3.4)

Similarly, the second boundary condition gives at x = x2(
δeλ1x2 + γλ1e

λ1x2
)
c1 +

(
δeλ2x2 + γλ2e

λ2x2
)
c2 = b2 − δyp(x2)− γy′p(x2) . (3.5)

Note that the coefficients of this system on the left-hand side depend on the left-hand
sides of the boundary conditions but not on the right-hand sides b1, b2 and not on the
function f(x).

From the course in Linear Algebra we know that the solution of the system for c1, c2
dependends on the value of the determinant D of the coefficient matrix associated to
this system of linear algebraic equations

D = det

(
βeλ1x1 + αλ1e

λ1x1 βeλ2x1 + αλ2e
λ2x1

δeλ1x2 + γλ1e
λ1x2 δeλ2x2 + γλ2e

λ2x2

)
.

Namely,

• If D 6= 0 the system has a unique solution for the coefficients c1, c2 for any choice
of the right-hand sides in equations (3.4),(3.5). Substituting these coefficients
into (3.3) we get the unique solution of the original B.V.P. Note that for the
corresponding homogeneous problem (that is, with b1 = b2 = 0 and f(x) ≡ 0)
also yp(x) = 0 and the right-hand sides in the corresponding algebraic equations
(3.4), (3.5) will be zero. Then the homogeneous problem will only have the trivial
zero solution yh(x) = 0 for x ∈ [x1, x2].

• If D = 0 the homogeneous linear algebraic system (3.4),(3.5) (i.e., with all right-
hand sides zero) will have infinitely many non-zero solutions. At the same time
the inhomogeneous linear systems with the same left-hand side will have either
infinitely many solutions or none at all. If it has infinitely many different solu-
tions for coefficients c1, c2, each solution will generate the corresponding different
solution to the original B.V.C., which then will have infinitely many solutions as
well.

Note:

If the characteristic equation has two complex-conjugate roots λ1,2 = a ± ib, any
particular solution yp(x) of the inhomogeneous equation can be written as

yg(x) = eax(c1 cos bx+ c2 sin bx) + yp(x) , (3.6)

and the proof can be performed along similar lines.
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