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2 Initial value problem for first-order
ODEs: existence and uniqueness of
solutions

In the previous chapter we have studied a few types of ODEs whose solutions y(x) or y(t)
we were able either to write down explicitly, or to characterize implicitly in terms of a given
function of two variables, e.g. as F (x, y) = C. The class of ODEs for which this can be
done is however rather small. Most ODEs which are encountered in practice can not be
solved in this or similar ways. If, however, we have an ODE for which we know that a
solution exists, we may proceed to investigate its properties (e.g., the behaviour of y(t)
for large t → ∞) regardless of whether we know the explicit form for the solution. The
corresponding methods are known as a qualitative study of ODEs, and some of them will be
briefly discussed later on in this module.
Another important aspect is the uniqueness of a solution. For this we first need to define
the initial value problem for a first-order ODE. Such a problem asks to find a function y(x)
solving a given ODE by taking a specific value y = b at the argument x = a. That is,
the solution must satisfy the initial value y(a) = b. We have seen for first-order ODEs
like dy

dx
= f(y, x) that the general solution always has a single free parameter, which is the

constant of integration. Solving an initial value problem requires to determine this free
parameter by using the given initial condition y(a) = b.
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2.0 Initial Value Problem

Example:
Consider the first order separable ODE

dy

dx
=

1

2y
.

Its solution is found to be y(x) = ±
√
x + C with arbitrary C. For this example, the initial

condition y(a) = b yields b = ±
√
a + C which is satisfied if C = b2 − a. Hence the solution

to the initial value problem is given by

y(x) =


√
x + b2 − a, if b > 0

−
√
x + b2 − a, if b < 0

both
√
x− a and −

√
x− a, if b = 0

.

We see that for b = 0 there are two solutions of the initial value problem, whereas for all
other values of b 6= 0 there is only one solution. In the latter case we say that the solution
is unique.
By a unique solution we mean the following:

Definition:
An initial value problem for an ODE with initial condition y(a) = b has a unique solution if
for any two solutions y1(x) and y2(x) satisfying the same initial condition y1(a) = y2(a) = b,
there exists positive number A > 0 and a positive B > 0 such that

y1(x) = y2(x), ∀x ∈ [a− A, a + A], y ∈ [b−B, b + B].

In other words, uniqueness implies that two such solutions are identical for all (x, y) in the
region D |x− a| ≤ A and |y − b| ≤ B for some A > 0, B > 0.

We have already seen that for some initial conditions solutions to initial value problems may
not be unique.

Example:
Consider the first order ODE

dy

dx
= 3y2/3

with initial condition y(0) = 0. Obviously, y(x) = 0 is a solution to this initial value
problem. On the other hand, this is a separable ODE, which in fact we have solved before:
By separating the variables we found y1/3 = x + C, hence we have a family F of solutions
y = (x + C)3. Obviously, y = x3 belongs to this family and also satisfies the above initial
condition. Consequently, the solution to our initial value problem y(0) = 0 is not unique.
Similarly, for the initial value problem y(a) = 0 there are two solutions passing through
the point (a, 0): y(x) = 0 and y(x) = (x − a)3; see Fig. 2.1. Moreover, the curve
M1N1

⋃
N1N2

⋃
N2K2, which is a mix between both these basic solutions, is another solu-

tion, as the left and the right derivatives at N1 and N2 are equal.
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Figure 2.1: Sketch of the solutions y = (x + C)3 to the ODE y′ = 3y2/3.

2.0.1 Picard-Lindelöf Existence and Uniqueness Theorem for I.V.P

Uniqueness of solutions is important for a number of reasons. Suppose we are able to find
by some technique a one-parameter family F of solutions y = yF(x) of a first-order ODE.
Furthermore, suppose for any point (a, b) in some domain D of the xy plane we can always
find a solution in our family F which satisfies yF(a) = b. If we know that uniqueness holds,
then our family F of solutions must contain all desired solutions to our ODE, and we need
look no further for other solutions.
Uniqueness will also be of importance if, for instance, we wanted to approximate a solution
numerically. If two different solutions passed through a point, then successive approxima-
tions could very well jump from one solution to the other - with misleading consequences.
It is therefore important to know under which conditions one can expect an ODE to have
a unique solution for a specified initial condition. In case of first-order ODEs the answer is
largely given by the Picard-Lindelöf Existence and Uniqueness Theorem, which we
state without proof:

Theorem: Picard-Lindelöf Existence and Uniqueness Theorem
Consider the initial value problem

dy

dx
= f(x, y) with y(a) = b . (2.1)

Consider the IVP (2.1) on a rectangular domain D of the form |x− a| ≤ A and |y− b| ≤ B
(see Fig. 2.2), then it has one and only one solution in D provided the following two
conditions are satisfied:

• The function f(x, y) is continuous inD and therefore bounded: |f(x, y)| ≤M ∀(x, y) ∈
D for some positive constant M > 0. We also have to impose the restriction A ≤ B/M
on the width of D.

• It has bounded derivative ∂f
∂y

everywhere in D, that is, the value K = max(x,y)∈D

∣∣∣∂f∂y ∣∣∣
is finite: 0 < K <∞.

Note:
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solution curve

Figure 2.2: Sketch of a a rectangular space D : {a−A ≤ x ≤ a + A, b−B ≤ y ≤ b + B},
where uniqueness is ensured due to the Picard-Lindelöf theorem.

To see where the condition A ≤ B/M comes from one needs to go through the proof.

If the derivative ∂f
∂y

is continuous everywhere in D then it is necessarily bounded.

The second condition is known as the Lipschitz condition and the constant K as the Lipschitz
constant.

Example:

For the example of non-uniqueness given above, with f(y) = 3y2/3 we have ∂f
∂y

= 2y−1/3

which diverges close to y = b = 0 thus violating the Lipschitz condition and hence invali-
dating the Picard-Lindelöf theorem.

Note:

It is important to understand that the existence and uniqueness properties of the solution
are guaranteed by the Picard–Lindelöf theorem only locally, i.e., sufficiently close to the
point (a, b). In no way it implies existence and uniqueness everywhere.

Example:

Consider the initial value problem

dy

dx
= f(x, y), y(0) = 1 ,

where f(x, y) is defined as

f(x, y) = x2|y|
1
3 ,

i) Explain why the Picard-Lindelöf Theorem guarantees the existence and uniqueness of
the solution to the above I.V.P on a rectangular domain D = (|x| ≤ A, |y − 1| ≤ B) in
the xy plane only for heights B satisfying 0 < B < 1. Find the value of the Lipschitz
constant K for the above problem for given A and B.
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ii) Suppose that the height B of D is given and satisfies 0 < B < 1. Show that the width
A must then satisfy the inequality

0 < A ≤ B1/3

(1 + B)1/9

Solution:

i) The right-hand side of f(x, y) depends on |y|, hence formally it is defined separately
for positive and negative values of y:

f(x, y) =

{
x2y1/3, y > 0

x2(−y)1/3, y < 0

This polynomial expression is continuous everywhere in D, as nothing goes wrong at
y = 0:

lim
y→0+

f(x, y) = lim
y→0−

f(x, y) = 0 .

On the other hand, the derivative

∂f

∂y
=

{
1
3
x2y−2/3 for y > 0

−1
3
x2(−y)−2/3 for y < 0

is defined and finite everywhere except at y = 0 where it diverges. Therefore this point
has to be excluded from D to ensure the conditions of the Picard-Lindelöf Theorem.
This means the interval |y − 1| ≤ B (or, equivalently, y ∈ [1−B, 1 + B] with B > 0)
cannot contain y = 0, which is only possible for 0 < B < 1.

The Lipschitz constant K can be found according to

K = max(x,y)∈D

∣∣∣∣∂f∂y
∣∣∣∣

= max
[
x2
]
−A≤x≤A ·max

[
1

3
|y|−2/3

]
1−B≤y≤1+B

=
A2

3(1−B)2/3

ii) The modulus of the function |f(x, y)| = x2|y|1/3 on the right-hand side of the ODE
grows with both |x| and |y|, hence for a given B its maximum M in D is achieved for
x = ±A and y = 1 + B:

M = max(x,y)∈D|f(x, y)| = A2(1 + B)1/3

This in turn implies that the width A > 0 should satisfy A ≤ B/M = B
A2(1+B)1/3

.

Rearranging gives

A3 ≤ B

(1 + B)1/3
or 0 < A ≤ B1/3

(1 + B)1/9
.
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2.1 Systems of first-order ODEs

Our main goal in this section is to extend the previous theory of existence and uniqueness
to systems of n first-order ODEs for n unknown functions y1(x), y2(x), . . . , yn(x) written in
the normal form 

ẏ1 = f1(x, y1, . . . , yn)
ẏ2 = f2(x, y1, . . . , yn)

. . .

. . .
ẏn = fn(x, y1, . . . , yn)

(2.2)

For sake of brevity we consider only the case n = 2. Using vector notation we can write
down any such system in normal form as

ẏ = f(x,y), y =

(
y1
y2

)
, f =

(
f1(x, y1, y2)
f2(x, y1, y2)

)
. (2.3)

By imposing the initial conditions at x = a

y1(a) = b1 , y2(a) = b2 , (2.4)

where b1 and b2 are given constants, we can formulate the initial value problem for the
system (2.3).

In this setting one can prove the following generalisation of the Picard–Lindelöf The-
orem:
The initial value problem (2.4) for (2.3) has one and only one solution in a cuboid do-
main D of the form |x − a| ≤ A and |y1 − b1| ≤ B1, |y2 − b2| ≤ B2 provided the functions
f1(x, y1, y2), f2(x, y1, y2) and all the partial derivatives ∂fi

∂yj
for all choices of i, j ∈ {1, 2} are

continuous in D.

The equivalence of n first-order ODEs to 1 n-th order ODE with independent
variable x

The system (2.2) is very fundamental, as any n-th order ODE of the form

dny

dxn
= F

(
x, y,

dy

dx
,
d2y

dx2
, . . . ,

dn−1y

dxn−1

)
(2.5)

is in fact equivalent to a system of the form (2.2). To see this, we denote

y1(x) ≡ y(x), y2(x) ≡ dy

dx
, y3(x) ≡ d2y

dx2
, . . . , yn(x) ≡ dn−1y

dxn−1 . (2.6)

The functions y1(x), . . . , yn(x) then satisfy the (n− 1) relations

dy1(x)

dx
= y2(x),

dy2(x)

dx
= y3(x), . . . ,

dyn−1(x)

dx
= yn(x) (2.7)

such that (2.10) takes the form, in the new notation,

dyn(x)

dx
= F (x, y1, y2, y3, . . . , yn) . (2.8)
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Equations (2.7)-(2.8) are exactly of the form of (2.2) with

f1(x,y) = y2, f2(x,y) = y3, . . . (2.9)

. . . , fn−1(x,y) = yn , fn(x,y) = F (x, y1, y2, y3, . . . , yn) .

Example:
Transform the second order ODE

d2y

dx2
= 6y − 4

dy

dx
to a system of first-order ODEs.

Solution:
By using Eq. (2.6)

y1(x) ≡ y(x) , y2(t) ≡
dy

dx
.

Differentiate these equations, cf. (2.7):

dy1(x)

dx
= y′ = y2(x) ,

y2(x)

dx
= y′′ = 6y − 4y′ .

According to (2.8) we then obtain the system of two first-order ODEs

dy1(x)

dx
= y2(x) ,

dy2(x)

dx
= 6y1 − 4y2 .

This example belongs to an important special class of n-th order ODEs, linear ODEs of
second order (here with constant coefficients), which we will discuss in more detail in the
next chapter.

The equivalence of n first-order ODEs to 1 n-th order ODE with independent
variable t
Note that following similar steps, upon identification of the independent variable x with t,
(i.e. by putting t ≡ x), we can show that any n-th order ODE of the form

dny

dxn
= F

(
x, y,

dy

dx
,
d2y

dx2
, . . . ,

dn−1y

dxn−1

)
(2.10)

is equivalent to the system of n 1st order ODEs for n unknown functions y1(t), y2(t), . . . , yn(t)
of the independent variable t, written in normal form

ẏ1 = f1(t, y1, . . . , yn)
ẏ2 = f2(t, y1, . . . , yn)

. . .

. . .
ẏn = fn(t, y1, . . . , yn).

(2.11)

To see this, we denote

y1(t) ≡ y(x), y2(t) ≡
dy

dx
, y3(t) ≡

d2y

dx2
, . . . , yn(t) ≡ dn−1y

dxn−1 . (2.12)
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The functions y1(t), . . . , yn(t) then satisfy the (n− 1) relations

dy1(t)

dt
= y2(t),

dy2(t)

dt
= y3(t), . . . ,

dyn−1(t)

dt
= yn(t) (2.13)

such that (2.10) takes the form, in the new notation,

dyn(t)

dt
= F (t, y1, y2, y3, . . . , yn) . (2.14)

Equations (2.13)-(2.14) are exactly of the form of (2.11) with

f1(t,y) = y2, f2(t,y) = y3, . . . (2.15)

. . . , fn−1(t,y) = yn , fn(t,y) = F (t, y1, y2, y3, . . . , yn) .

Example:Transform the second order ODE

d2y

dx2
= 6y − 4

dy

dx

to a system of first-order ODEs with independent variable t.
By identifying t with x, (i.e. putting t ≡ x) and using Eq. (2.12)

y1(t) ≡ y(x) , y2(t) ≡
dy

dx
.

Differentiate these equations, cf. (2.13):

dy1(t)

dt
= y′ = y2(t) ,

y2(t)

dt
= y′′ = 6y − 4y′ .

According to (2.8) we then obtain the system of two first-order ODEs

dy1(t)

dt
= y2 ,

dy2(t)

dt
= 6y1 − 4y2 .

or equivalently
ẏ1(t) = y2 , ẏ2(t) = 6y1 − 4y2 .
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