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2. Consider equations of the type

y′ = F
(y
x

)
(1.8)

Such ODEs do not change if we rescale x → kx and y → ky for any real constant
factor k 6= 0, hence they are known under the name scale-invariant first order ODEs.
To reduce them to separable equations one introduces a new function z(x) = y(x)/x
which implies y(x) = xz(x). Differentiating this equation gives y′ = z(x) + xz′(x),
and (1.8) can be rewritten in the form z + xz′ = F (z) or equivalently

z′ =
1

x
[F (z)− z] (1.9)

which is indeed separable.

Example:

Solve the equation
xy′ = y − xey/x.

Solution:

After dividing both sides by x we see that the equation is of the form (1.8) with the
right-hand side F (z) = z − ez. Therefore it is equivalent to the separable equation

z′ = −1

x
ez .

Solving it by standard means leads to e−z = ln |x|+ C or

z = − ln (ln |x|+ C) .

Finally the general solution to the original ODE is

y(x) = −x ln (ln |x|+ C) .

1.3 First order linear ODEs

This class of equations is given by

y′ = A(x) y + B(x) , (1.10)

where the two functions A(x) 6= 0 and B(x) are known. These equations are called linear
(in y), because y and its derivative y′ occur only to the first power, they are not multiplied
together, nor do they appear as the argument of a function (such as sin y, exp(y), etc.). If
B(x) = 0, the equation is called homogeneous, if B(x) 6= 0 it is called inhomogeneous.

Example:

y′ = sin(x)y homogeneous
y′ = exy + x inhomogeneous
y′ = 1− y2 + x nonlinear
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The method of solution of such equations proceeds in two steps:

Step 1: Solve the homogeneous equation y′ = A(x) y, which is separable. The general
solution is found to be∫

dy

y
=

∫
A(x) dx + C ⇒ ln |y| =

∫
A(x) dx + C (1.11)

and finally
y = De

∫
A(x) dx, (1.12)

where D ∈ R is an arbitrary real constant (also called a free parameter).

Step 2 is known as the variation of parameter method. It amounts to looking for the
solution of (1.10) in the form

y = D(x) e
∫
A(x) dx, (1.13)

where D(x) is now an unknown function to be determined by substituting (1.13) to (1.10).
This gives

y′ = D′(x) e
∫
A(x) dx + A(x)D(x) e

∫
A(x) dx = A(x)D(x) e

∫
A(x) dx + B(x) ,

which after cancelling equal terms on both sides is equivalent to

D′(x) e
∫
A(x) dx = B(x). (1.14)

This allows us to write D′(x) = e−
∫
A(x) dx B(x) and to recover D(x) by simple integration

D(x) =

∫
e−

∫
A(x) dx B(x) dx + C (1.15)

finally yielding the general solution of (1.10) in the form

y(x) = e
∫
A(x) dx

(∫
e−

∫
A(x) dx B(x) dx + C

)
∀C ∈ R (1.16)

Note: An alternative method to derive the same result is the integrating factor method, as
you have seen in Calculus 2.

Example:
Solve the equation

y′ + 2xy = x.

Solution:
First we solve y′ + 2xy = 0 by separation of variables obtaining y = De−x

2
, where D is

an arbitrary constant. Now we assume D = D(x) and substitute y = D(x)e−x
2

to the full
non-homogeneous equation:

y′ = D′(x)e−x
2

+ D(x)(−2x)e−x
2

.

Thus, we have
D′(x)e−x

2

+ D(x)(−2x)e−x
2

+ 2xD(x)e−x
2

= x

which implies D′(x) = xex
2
, hence D(x) =

∫
xex

2
dx = 1

2
ex

2
+ C. Finally, the general

solution to the original ODE is given by

y(x) =

(
1

2
ex

2

+ C

)
e−x

2

=
1

2
+ Ce−x

2

.
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1.4 Exact first order ODEs.

Exact ODEs are of the form

P (x, y) + Q(x, y)
dy

dx
= 0 . (1.17)

We would like to find solutions of this class of ODEs in implicit form F (x, y) = C , y = y(x),
for a constant C. Using the chain rule we observe that

dF (x, y(x))

dx
=

∂F

∂x
+

∂F

∂y

dy

dx
= 0 , (1.18)

which coincides with (1.17) if we define

P (x, y) =
∂F

∂x
, Q(x, y) =

∂F

∂y
. (1.19)

Using these definitions we have

∂

∂y
P (x, y) =

∂2F

∂y∂x
,

∂

∂x
Q(x, y) =

∂2F

∂x∂y
. (1.20)

If F is twice differentiable in both x and y with continuous second order partial derivatives,
we have (according to the mixed derivatives theorem in Calculus 2)

∂2F

∂y∂x
=

∂2F

∂x∂y
,

and we conclude that the equation

∂

∂y
P (x, y) =

∂

∂x
Q(x, y) (1.21)

must hold. Equation (1.21) is the crucial condition for (1.17) to be exact. For any exact
ODE the general solution can always be written in the implicit form F (x, y) = C.
To determine the form of the function F (x, y), one may start with the first equation in
(1.19) by integrating it over the variable x to

P (x, y) =
∂F

∂x
⇒ F (x, y) =

∫
P (x, y)dx + g(y) , (1.22)

where the function g(y) is an arbitrary function of the variable y, yet to be determined. To
find g(y) we use the second equation in (1.19)

Q(x, y) =
∂F

∂y
=

∂

∂y

∫
P (x, y)dx + g′(y) , (1.23)

which gives

g′(y) = Q(x, y)− ∂

∂y

∫
P (x, y)dx (1.24)

The missing function g(y) can then be found by straightforward integration of this equation.
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Example:
Show that the equation

3x2 + y − (3y2 − x)
dy

dx
= 0

is exact and find its general solution in implicit form.

Solution:
We identify P (x, y) = 3x2+y, hence ∂P

∂y
= 1. Similarly, Q(x, y) = −(3y2−x), hence ∂Q

∂x
= 1.

Since ∂P
∂y

= ∂Q
∂x

the equation is exact.

We find its implicit solution in the form F (x, y) = C by

F (x, y) =

∫
P (x, y)dx + g(y) =

∫
(3x2 + y) dx + g(y) = x3 + xy + g(y) ,

where g(y) is yet undetermined. We further have

∂F

∂y
= x + g′(y) = Q(x, y) = −(3y2 − x), ⇒ g′(y) = −3y2 .

This allows us to find

g(y) =

∫
(−3y2) dy = −y3 + C1 ,

where C1 is an arbitrary constant. There is no need to keep C1, as it can always be absorbed
into the constant C. The general solution of the original equation in implicit form is obtained
as

F (x, y) = x3 + xy − y3 = C.

Note:
The same ODE can be presented in a different form, for example:

dy

dx
=

3x2 + y

3y2 − x

One needs to recognize the equivalence of this equation to the form of an exact ODE by
then applying the same procedure for a solution.
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