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MTH5123 Differential Equations

Solution to the Exam Problems 2015

All problems are either already seen in example classes, or slight modifications of those.

1. a) Find the general solution of the homogeneous ODE 4y′′ + 4y′ + y = 0 (6 points)

Solution: The characteristic equation is 4λ2 + 4λ + 1 = (2λ + 1)2 = 0 [1p]
which has a real root: λ1 = −1/2 of multiplicity two [2p]. The general solution
to the homogeneous equation is given by yh(x) = (c1 +c2x)e−x/2 with arbitrary
constants c1 and c2. [3p].

b) Find the general solution of the non-homogeneous ODE

4y′′ + 4y′ + y = cos
(
x

2

)
+ sin

(
x

2

)
(12 points)

Solution: Since the functions cos
(
x
2

)
and sin

(
x
2

)
are not solutions to the

homogeneous equation[2p], we may use the ”educated guess” method and look
for the particular solution of the non-homogeneous equation in the form yp(x) =

A cos
(
x
2

)
+B sin

(
x
2

)
[2p] so that:

y′p = −A
2

sin
(
x

2

)
+
B

2
cos

(
x

2

)
, y′′p(x) = −A

4
cos

(
x

2

)
− B

4
sin

(
x

2

)
so that y′′p = −1

4
yp, [1p]. Substituting this back to the nonhomogeneous equa-

tion gives in the left-hand side:

4y′′p + 4y′p + yp = −yp + 4y′p + yp = −2A sin
(
x

2

)
+ 2B cos

(
x

2

)
[2p]

so that to match to the right-hand side we should choose A = −1/2, B = 1/2

so that yp(x) = −1
2

cos
(
x
2

)
+ 1

2
sin

(
x
2

)
[3p]. Finally, the general solution to the

non-homogeneous equation is given by the sum:

yg(x) = (c1 + c2x)e−x/2 − 1

2
cos

(
x

2

)
+

1

2
sin

(
x

2

)
, [2p]
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c) Solve the following initial value problem

y′ =
y

x
+ x , y(1) = 2

(7 points)

Solution. The ODE is linear non-homogenious of the first order. The corre-
sponding homogeneous ODE y′ = y

x
is separable and following the standard

procedure we introduce in the left-hand side H(y) =
∫ dy

y
= ln |y|, hence solving

H(y) = u we find y = ±eu = H−1(u). In the right-hand side we have∫ dx

x
= ln |x|+ C,

so that the general solution to the homogeneous equation is given by

yh = H−1 (ln |x|+ C) = ±eC |x| = Dx, [3p]

where we denoted D = ±eC the constant of arbitrary sign. According to the
variation of parameters method we look for a solution of the non-homogeneous
ODE in the form:

y = D(x)x, ⇒ y′ = D′ x+D,

Substituting this back to the equation y′ = y
x

+ x we have

y′ = D′ x+D =
y

x
+ x ≡ D + x

which implies
D′(x) = 1, D(x) = x+ C

which gives for the general solution of the non-homogeneous ODE

yg(x) = x(x+ C), [3p]

Finally, the given initial value y(1) = 2 = 1 + C requires C = 1 so that the
solution to the initial value problem is given by y = x(x+ 1), [1p].

Alternative way:

Substitution y = xz(x), so that y′ = z + xz′ and we have

z + xz′ = z + x, ⇒ z′ = 1 ⇒ z = x+ C ⇒ y = x(x+ C)

and from the initial condition C = 1. FULL MARKS.
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2. (a) (i) Find all functions f(y) for which the following differential equation becomes
exact:

dy

dx
= − x3 + f(y)

6xy2 + 5y4
, (1)

(5 points)

Solution: Denoting P (x, y) = x3 + f(y), Q(x, y) = 6xy2 + 5y4 [2p] we
can rewrite the above equation in the standard form P (x, y)+Q(x, y) dy

dx
=

0. We then have ∂P
∂y

= d
dy

(f(y)) whereas ∂Q
∂x

= 6y2 [1p], hence the equation

is exact only if d
dy

(f(y)) = 6y2 or equivalently f(y) = 2y3 + C [2p], with
any constant C.

(ii) Suppose, f(y) is chosen so that the equation (1) is exact and f(1) = 0. Solve
(1) in implicit form. (10 points)

Solution: The condition f(1) = 2 + C = 0 makes us to choose C = −2,
so that f(y) = 2(y3 − 1) [2p]. Then the general solution should be looked
for in implicit form as F (x, y) = Const where

F =
∫
P (x, y) dx =

∫ (
x3 + 2(y3 − 1)

)
dx =

x4

4
+2x(y3−1)+g(y), [3p]

where g(y) is to be determined from the condition Q = ∂F
∂y

= 6xy2 + g′(y)

[1p]. We therefore conclude that g′(y) = 5y4 [1p] so that g(y) = y5 [2p].
Thus the solution in implicit form is x4

4
+ 2x(y3 − 1) + y5 = Const [1p].

b) Consider the initial value problem (IVP)

dy

dx
= 2x

√
|y − 1| ≡

{
2x
√
y − 1, y ≥ 1

2x
√

1− y, y < 1
, y(0) = b .

where b is a real parameter.
Find the value of the parameter b such that the corresponding IVP may have more
than one solution and explain your choice. Confirm your choice by giving at least
two different solutions of the IVP in the domain y ≥ 1 for such a value of the
parameter. (6 points)

Solution: The solution to IVP is unique if the function f(x, y) = 2x
√
|y − 1|

is continuous in some domain in the xy plane centered at the point with coordi-
nates x = 0, y = b [1p] and the modulus of its partial derivative |∂f

∂y
| = |x|√

|y−1|



4

is bounded in the same domain [1p]. The second condition is certainly violated
for the choice b = 1 so for that choice we may expect non-uniqueness. [1p].
Solving the differential equation by the separation of variables method we get
for y ≥ 1 the general solution:

∫ dy

2
√
y − 1

=
∫
x dx, ⇒

√
y − 1 =

x2

2
+ C [1p]

The initial condition y(0) = 1 fixes C = 0, so that a solution to IVP is y =
1 + x4

4
[1p]. On the other hand the constant solution y(x) = 1 solves the same

IVP [1p].

c) Consider the inhomogeneous boundary value problem (BVP)

y′′ + b2y = 5 , y(0) = 1, y′
(
π

2

)
= 1 .

where b > 0 is a real parameter. Find all positive values of the parameter b such
that the corresponding BVP may have either no solution or infinitely many solu-
tions. (4 points)

Solution: From the Theorem of the Alternative the inhomogeneous boundary
value problem may have no solutions or infinitely many solutions if and only
if the corresponding homogeneous boundary value problem

y′′ + b2y = 0 , y(0) = 0, y′
(
π

2

)
= 0 .

allows a non-zero solution[1p]. The characteristic equation for the associated
ODE is λ2 + b2 = 0 with two complex conjugate roots λ = ±ib for b > 0. The
general solution is then given by

y(x) = A cos (bx) +B sin (bx)

The left homogeneous BC y(0) = 0 implies that A = 0 so that y(x) =

B sin (bx)[1p], then y′(x) = Bb cos (bx) so that the right-end BC gives y′
(
π
2

)
=

Bb cos πb
2

= 0[1p] which is possible for πb
2

= π
2
(2n+ 1) for n = 0, 1, 2, ..., hence

b = 1, 3, 5... - any positive odd integer[1p].
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3. Write down the solution to the following Boundary Value Problem (BVP) for the second
order non-homogeneous differential equation

1

(x+ 1)

d2y

dx2
− 1

(x+ 1)2
dy

dx
= f(x), y(0) = 0, y′(1) = 0

by using the Green’s function method along the following lines:

a) Show that the left-hand side of the ODE can be written down in the form d
dx

(
r(x) dy

dx

)
for some function r(x) and use this fact to determine the general solution of the
associated homogeneous ODE. (4 points)

Solution: We have

d

dx

(
r(x)

dy

dx

)
= r(x)

d2y

dx2
+ r′(x)

dy

dx

which indeed coincides with the original ODE for r(x) = 1
x+1

. The homoge-
neous ODE therefore has the form:

d

dx

(
1

x+ 1

dy

dx

)
= 0 [1p]

and can be easily integrated to find the general solution [3p]:

1

x+ 1

dy

dx
= C1, ⇒ dy

dx
= C1(x+ 1), ⇒ y(x) = C1

(
x2

2
+ x

)
+ C2

for arbitrary constants C1 and C2.

b) Formulate the corresponding left-end and right-end initial value problems and use
their solutions to construct the Green’s function G(x, s). (14 points)

Solution: The left-end boundary condition y(0) = 0 is imposed at x1 = 0.
By comparing it to the standard form αy′(x1) + βy(x1) = 0 we conclude that
α = 0, β = 1 [1p]. Then the left-end initial value problem for the function
yL(x) is formulated as

yL(x1) = α, y′L(x1) = −β, ⇒ yL(0) = 0, y′L(0) = −1 [2p]

Substituting here the general solution of the homogeneous equation yields C2 =
0, C1 = −1 [1p] so that

yL(x) = −
(
x2

2
+ x

)
, [1p]
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Obviously, x2 = 1 and by comparing the right-end boundary condition y′(1) =
0 to the standard form γy′(x2) + δy(x2) = 0 we conclude that γ = 1, δ = 0[1p].
Then the right-end initial value problem for the function yR(x) is formulated
as

yR(x2) = γ, y′R(x2) = −δ, ⇒ yR(1) = 1, y′R(1) = 0, [1p]

which now gives C1 = 0, C2 = 1 and finally

yR(x) = 1, [2p]

Now we can use yL(x), yR(x) for constructing the Green’s function G(x, s).
First we calculate the Wronskian

W (s) = yL(s)y′R(s)− yR(s)y′L(s) = (s+ 1), [1p]

We also should take into account that from the original ODE a2(s) = 1
s+1

so
that a2(s)W (s) = 1 [1p] and we have

A(s) = yR(s)/ (a2(s)W (s)) = 1, B(s) = yL(s)/ (a2(s)W (s)) = −
(
s2

2
+ s

)
, [1p]

Finally the Green’s function is constructed as

G(x, s) =

{
A(s)yl(x), 0 ≤ x ≤ s
B(s)yR(x), s ≤ x ≤ 1

=

 −
(
x2

2
+ x

)
, 0 ≤ x ≤ s

−
(
s2

2
+ s

)
, s ≤ x ≤ 1

, [2p]

c) Write down the solution to the BVP in terms of G(x, s) and f(x) and use it to
find the explicit form of the solution for f(x) = 2x.

(7 points)

Solution: The solution to the boundary value problem is given by

y(x) =
∫ 1

0
G(x, s) f(s) ds =

∫ x

0
G(x, s) f(s) ds+

∫ 1

x
G(x, s) f(s) ds

= −
∫ x

0

(
s2

2
+ s

)
f(s) ds−

(
x2

2
+ x

)∫ 1

x
f(s) ds , [2p]
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substituting here f(x) = 2x and using

∫ x

0

(
s2

2
+ s

)
2s ds =

[
2

3
s3 +

1

4
s4
]x
0

=
2

3
x3 +

1

4
x4, [1p]

and ∫ 1

x
2s ds = s2|1x = 1− x2, [1p]

we finally can write the solution in the form

y(x) = −
[

1

4
x4 +

2

3
x3 + (1− x2)

(
x2

2
+ x

)]
, [1p]

which after simplifying yields

y(x) =
x4

4
+
x3

3
− x2

2
− x, [2p]
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4. Consider
ẋ = 2x− 4y, ẏ = ax− 6y . (2)

where −∞ < a <∞ is a real parameter.

a) For the particular value a = −5 determine eigenvalues and eigenvectors associ-
ated with the system, find equations for stable and unstable invariant manifolds
and sketch the phase portrait.

(11 points)

Solution. First for a = −5 we rewrite the system in the matrix form

(
ẋ
ẏ

)
=

A

(
x
y

)
where the matrix A associated with the system is given by A =(

2 −4
−5 −6

)
[1p] The characteristic equation is (2− λ)(−6− λ)− 20 = λ2 +

4λ − 32 = 0 and has two real roots λ1 = 4 and λ2 = −8, [1p]. Eigenvector
corresponding to λ1 = 4 is found as(

2 −4
−5 −6

)(
p1
q1

)
= 4

(
p1
q1

)
, [2p]

which implies 4q1 = −2p1, [1p] hence we can choose for example p1 = 2 and
q1 = −1. For second eigenvalue λ2 = −8 we similarly find(

2 −4
−5 −6

)(
p2
q2

)
= −8

(
p2
q2

)
, [2p]

which implies 4q2 = 10p2, [1p] so that we can choose, for example p2 =
2, q2 = 5.

As λ1 > 0 the trajectories will be for t→ +∞ parallel to the straight line ( the
”unstable manifold”) given by y = q1

p1
x = −1

2
x [1p], whereas for t→ −∞ they

will be parallel to the stable manifold y = q2
p2
x = 5

2
x [1p]. The corresponding

phase portrait can be sketched as [1p]:

Sketch to be placed here
Description: a diagram of two intersecting invariant manifolds: y = −1

2
x (with

the arrow showing motion along it away from the origin) and y = 5
2
x (with the
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arrow showing motion along it towards the origin)and separating the plane in
4 quadrants. The rest is a bunch of trajectories which are hyperbolas starting
tangent to y = 5

2
x in all quadrants and flowing finally tangent to y = −1

2
x.

b) Classify for which values of the parameter a the equilibrium point x = y = 0 of
that system represents (ii) focus (ii) node and (iii) saddle. For which values of the
parameter a the equilibrium is not hyperbolic?

(9 points)

Solution. For a general a we rewrite the system in the matrix form

(
ẋ
ẏ

)
=

A

(
x
y

)
where A =

(
2 −4
a −6

)
. The characteristic equation is now (2 −

λ)(−6− λ) + 4a = λ2 + 4λ+ 4a− 12 = 0 with the roots

λ1,2 =
1

2

(
−4±

√
64− 16a

)
= −2± 2

√
4− a [1p] .

We see that for a > 4 the eigenvalues are complex conjugate with negative real
part:

λ1,2 = −2± 2i
√
a− 4 [1p] .

hence for a > 4 the equilibrium is a stable focus [1p].

For a < 4 both eigenvalues are real [1p]. Whereas λ2 = −2 − 2
√

4− a < 0
for all a < 4, the eigenvalue λ1 = −2 + 2

√
4− a may change sign. Solving

λ1 = 0 gives a = 3 (thus for such a the equilibrium is not hyperbolic [1p])
and we further see that λ1 > 0 for a < 3 and λ1 < 0 for 3 < a < 4 [2p]. We
therefore conclude that for 3 < a < 4 we have both λ1 < 0 and λ2 < 0, so
the equilibrium is a stable node [1p]. For a < 3 the eigenvalues have different
signs and the equilibrium is a saddle[1p].
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c) Consider a system of two nonlinear first-order ODE:

ẋ = −x3 + 2y3, ẏ = −2xy2 . (3)

Demonstrate how to use the function V (x, y) = 1
2
(x2 + y2) to investigate the

stability of the above system. (5 points)

Solution. The function V (x, y) = 1
2
(x2 + y2) > 0 for (x, y) 6= (0, 0) [1p] and

its orbital derivative is given by

DfV =
∂V

∂x
ẋ+

∂V

∂y
ẏ

= x(−x3+2y3)+y
(
−2xy2

)
= −x4+2xy3−2xy3 = −x4 ≤ 0,∀ (x, y) 6= (0, 0) [3p]

Therefore V (x, y) is a valid Lyapunov function ensuring the stability (but not
asymptotic stability) of the solution of nonlinear equation in the whole (x, y)
plane [1p].


