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Problem 1

Similar as lecture examples

Let r be the per capita growth rate of a population in the time interval dt and N be the
population density, which is the total number of individuals in this population. Note r is
a constant number not a variable here.

a) Solve the general solution to the first-order ordinary differential equation (ODE),
dN
dt

= rN . Supposing r = 1, find the specific solution when the initial population den-
sity at t = 0 is N(0) = 100. (5 marks)

Solution: The ODE for the population density is

dN

dt
= rN.

The general solution is N = Cert, where D can be any arbitrary positive value (3
marks). When t = 0, N(0) = C = 100. Thus, the solution for the initial value pro-
blem is N = 100et(2 mark).

b) Now suppose the per capita growth rate will decrease linearly with the population den-
sity. When the population density approaches its maximum size K, the per capita growth
rate decrease to be 0. This yields the logistic equation,

dN

dt
= N(1− N

K
).

Find the general solution of this ODE by the method of separation variables. Note K is a
constant number not a variable here. According to this general solution, describe how will
the population size change when t→∞. (10 marks)

Solution: We can rewrite the equation as

dN

N(1− N
K

)
= 1dt

(2 marks) ∫
K

N(K −N)
dN =

∫
1dt
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(1 mark) ∫
(

1

N
+

1

K −N
)dN = t+ C

(2 marks)
lnN − ln(K −N) = t+ C

N

K −N
= Det

N =
DKet

Det + 1
,

where D can be any arbitrary positive value (2 marks). We can rewrite our general solution
as K

1+ 1
D
e−t , thus when time goes infinity, the population size approaches K (3 marks).

Problem 2

similar form as tutorial problems with adaptations

a) Find the general of the following ordinary differential equation

(x− 1)y′ = 2y.

. (5 marks)

Solution: First we solve y′ = 2y
x−1 by separating variables. H(y) = ln |y|, hence

H−1(u) = ±eu, and on the right-hand side
∫

2
x−1 dx = 2 ln |x− 1|+ C. This gives

y = ±e2 ln |x−1|+C = D(x− 1)2

where we denote D = ±eC (5 marks).

b) Use the Picard-Lindelöf Theorem to show that 0 < A < 1 is required for the ODE
in (a) with the initial condition y(0) = 1 to have a unique solution in a rectangular
domain |x| ≤ A, |y − 1| ≤ B. Describe the position of this domain in the xy plane.
Find out the other conditions between A and B to guarantee the uniqueness of the
solution in this domain. (8 marks)

Solution:
In our case of initial condition means x = 0 and y(0) = 1, which refers to a point
(0, 1) in the xy plane. Hence, the rectangular domain D = (|x| ≤ A, |y − 1| ≤ B) is
a domain around point (0, 1) with the width as 2A and the height as 2B (1 mark).
The right-hand side f(x, y) = 2y

x−1 is continuous everywhere in D, if D does not
include x = 1. As −A ≤ x ≤ A, we require 0 < A < 1 for the uniqueness of the
solution inside D (2 mark).
In addition, we have the maximal value of |f(x, y)| in domainD isM = maxD | 2yx−1 | =
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2(1+B)
|1−A| , when x = A and y = 1 +B. The existence and uniqueness of the solution to

the ODE requires A ≤ B/M . Thus, we have

A ≤ B/M =
B|1− A|
2(1 +B)

.

(3 mark).

The partial derivative of f(x, y) is bounded if domain D does not include x = 1,
because ∣∣∣∣∂f∂y

∣∣∣∣ =
2

x− 1
,

(2 marks), which is the same condition as f(x, y) is continuous in this domain.
Thus, to guarantee the uniqueness of solution in Domain D is 0 < A < 1 and
A ≤ B|1−A|

2(1+B)
.

c) Use the Picard-Lindelöf Theorem to show whether the ODE in (a) has a unique
solution around a different initial condition y(1) = 0. If not, based on the general
solution obtained in (a) and this initial condition y(1) = 0, sketch and describe all
possible solutions to this initial value problem in the xy plane. (7 marks)

Solution:
The initial condition corresponds to the point (1, 0) in the xy plane (1 mark). As the
function f(x, y) = 2y

x−1 is discontinuous at x = 1, according to the Picard-Lindelöf
Theorem there is no rectangular domain around this initial point which can gua-
rantee the uniqueness of the solution to the I.V.P. (3 marks)
The general solution of the ODE is y = D(x − 1)2. As y(1) = D ∗ 0 = 0. Thus, D
can be any arbitrary number. All solutions belongs to the general solution and their
combinations can be a solution to this IVP, which can be written as

y(x) =

{
D1(x− 1)2, if x ≥ 1
D2(x− 1)2, if x < 1

,

Where D1 and D2 can be any arbitrary real number which can equal or not. We
can sketch the solutions as
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. (4 marks)

Problem 3

similar form as tutorial problems with adaptations
a) Find the general solution to the homogeneous second-order linear ODE

2y′′ + y′ − 15y = 0.

(5 marks)

Solution: The ODE is second-order linear ODE with constant coefficients, thus we first
write down the characteristic equation is 2λ2 + λ− 15 = 0 (2 marks). This equations has

two real roots λ1 = 5/2, λ2 = −3. Hence, the general solution is yh = C1e
5
2
x + C2e

−3x (3
marks).

b)Use the solution in (a) and educated guess method to find the general solution to the
inhomogeneous second-order linear ODE

2y′′ + y′ − 15y = 6e−2x.

(10 marks)

Solution:
First, we check whether −2 is a root of the characteristic equation of the corresponding
homogeneous ODE. Since the function e−2x is not a solution to the homogeneous equation,
we may use the educated guess (2 marks).
Second, we look for the particular solution of the inhomogeneous equation in the form
yp(x) = d0e

−2x (2 marks).
Thus we have y′p(x) = −2d0e

−2x (1 mark) and y′′p(x) = 4d0e
−2x (1 mark). Substituting

these back into the inhomogeneous equation gives on the left-hand side (8−2−15)d0e
−2x =

6e−2x so that to match to the right-hand side we should choose d0 = −2/3, hence yp(x) =
−2

3
e−2x (2 marks). (If the students directly write the solution for d0, they also get the full
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4 marks in this step.)
Finally, the general solution to the inhomogeneous equation is given by

yg(x) = yh(x) + yp(x) = C1e
5
2
x + C2e

−3x − 2

3
e−2x

(2 marks).

c) Use the variation of parameter method to find the general solution of the inhomo-
geneous equation

y′′ − 5y′ + 6y = e3x cosx.

(10 marks)

Solution: According to the variation of parameter method, the general solution of the
inhomogeneous equation will be yg(x) = yh(x)+yp(x), where yp(x) is a particular solution
and yh(x) is the general solution of the corresponding homogeneous equation. (2 marks)
The corresponding characteristic equation λ2 − 5λ + 6 = 0 has two roots: λ1 = 2 and
λ2 = 3 and the general solution is given by:

yh(x) = C1e
2x + C2e

3x.

(3 marks)
As λ1−λ2 = 2−3 = −1 we have yp(x) = −1·(e2x

∫
e−2xe3x cosx dx−e3x

∫
e−3xe3x cosx dx)

= −e2x
∫
ex cosx dx+ e3x

∫
cosx dx , where

∫
cosx dx = sinx.

Using the formula provided in the appendix,∫
ex cosxdx =

1

2
ex(sinx+ cosx).

Giving

yp(x) = −1

2
e3x(sinx+ cosx) + e3x sinx =

1

2
e3x(sinx− cosx) .(3 marks)

Finally, the general the solution of the inhomogeneous differential equation is given by

yg(x) = c1e
2x + c2e

3x +
1

2
e3x(sinx− cosx) .

(2 marks)

Problem 4

similar form as tutorial problems with adaptations

a) Write down the general solution to the following Euler-type second order differential
equation

x2
d2y

dx2
− 4x

dy

dx
+ 6y = 0.
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(9 marks)

Solution: According to the general method of solving the Euler-type equation we
introduce the new variable by x = et and the new function z(t) so that

z(t) = y(et), ⇒ dz

dt
= ety′,

d2z

dt2
= ety′ + e2ty′′

From the above we find correspondingly that y′ = e−tż, y′′ = e−2t(z̈− ż) (4 marks).
Substituting to the Euler-type equation reduces the latter to a homogeneous equa-
tion with constant coefficients:

e2t · e−2t(z̈ − ż)− 4et · e−tż + 2z = z̈ − 5ż + 6z = 0,

(2 marks)

The corresponding characteristic equation λ2 − 5λ + 6 = 0 has two roots: λ1 = 2
and λ2 = 3 and the general solution is given by:

z(t) = C1e
2t + C2e

3t,

for arbitrary constants C1 and C2 (2 marks). Finally, substituting t = lnx gives

y(x) = C1x
2 + C2x

3,

(1 mark)

b) Find the solution to the following Boundary Value Problem,

y′′ + 9y = 0, y′(0) = 5, y(
π

3
) = −5

3
.

(6 marks)
Solution: The corresponding characteristic equation λ2 + 9λ = 0 has two roots:
λ1 = 3i and λ2 = −3i and the general solution is given by:

y(x) = C1 cos 3x+ C2 sin 3x.

(3 marks)
Using the boundary conditions, we have

y(
π

3
) = C1 cos

3π

3
+ C2 sin

3π

3
= −C1 = −5/3

and
y′(0) = −3C1 sin 0 + 3C2 cos 0 = 3C2 = 5.

Thus the solution of the BVP is y(x) = 5
3
(cos 3x+ sin 3x). (3 mark)
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Problem 5

Similar as past resit exam paper with adaptations

Consider a system of two nonlinear first-order ODEs,

ẋ = xy − 4, ẏ = (x− 4)(y − x).

a) Compute all equilibria of this ODE system. (6 marks)

Solution.

There are in total 3 equilibria of this ODE system. The right-hand side ẏ = (x −
4)(y − x) = 0 for either x = 4 or y = x. (3 marks) For x = 4 the right-hand side
ẋ = xy − 4 = 0 vanishes for y = 1, hence we have an equilibrium at the point (4, 1)
in the (x, y) plane (1 mark). For y = x the right-hand side ẋ = xy − 4 = 0 for
x = y = ±2, giving two more equilibria at the points (2, 2) and (−2,−2) (2 marks).

b) Linearise the above equations around the equilibrium at y = 2 and write down its
matrix form. Find the corresponding eigenvalues and eigenvectors to this linearised
systems and write down its general solution. (10 marks)

Solution. The equilibrium with y = 2 is at (2, 2). To linearize around this point,
we need to evaluate ∂f1

∂x
, ∂f1

∂y
, ∂f2

∂x
, ∂f2

∂y
at the point of equilibrium, where f1 = xy − 4

and f2 = (x− 4)(y − x). We obtain

∂f1
∂x

= y|x=2,y=2 = 2,
∂f1
∂y

= x|x=2,y=2 = 2,

∂f2
∂x

= (y + 4− 2x)|x=2,y=2 = 2,
∂f2
∂y

= (x− 4)|x=2,y=2 = −2.(3 marks)

Thus, we have the linearized system as

ẋ = 2x+ 2y, ẏ = 2x− 2y,

(
ẋ
ẏ

)
=

(
2 2
2 −2

)(
x
y

)
(1 mark).
The characteristic equation is given by (2− λ)(−2− λ)− 4 = λ2 − 8 = 0 with the
two real roots of the opposite sign λ1,2 = ±2

√
2 (1 mark).

The eigenvector corresponding to λ1 = 2
√

2 can be found from(
2 2
2 −2

)(
p1
q1

)
= 2
√

2

(
p1
q1

)
, ⇒ p1 =

√
2

2−
√

2
q1 = (

√
2 + 1)q1

(2 marks).

so that the eigenvector can be chosen as u1 =

( √
2 + 1
1

)
by setting q1 = 1(1
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mark). Similarly, we have the eigenvector for λ2 = −2
√

2, u2 =

(
−
√
2

2+
√
2

1

)
=(

1−
√

2
1

)
(1 mark). We can see that these two eigenvectors are orthogonal as

u1u2 = (−
√

2 + 1)(
√

2 + 1) + 1 = 0.

(Note we can also write u1 =

(
1√

2− 1

)
and u2 =

(
1

−
√

2− 1

)
, which will

lead to the same result of general solution.)

Thus, the general solution of this system is(
x
y

)
= C1e

(2
√
2)t

(
1 +
√

2
1

)
+ C2e

(−2
√
2)t

(
1−
√

2
1

)
(2 marks).

c) Determine the type of equilibrium of the original ODE system at y = 2 (center, sta-
ble node sink, stable spiral, saddle, unstable node source, unstable spiral) and sketch
its phase portrait for the linearised system in (b). (4 marks)

Solution. As the real part of the eigenvalues are one positive and one negative, this
critical point (2, 2) is a saddle (2 marks). The phase portrait of this system around
this saddle point in the orginal coordinates is

-10 -5 0 5 10

-10

-5

0

5

10

x

y

. (2 marks)

We can also introduce the vector x̃ ≡
(
x̃
ỹ

)
of new coordinates x̃, ỹ related to the

vector of old coordinates x =

(
x
y

)
via x̃ = U−1x, where the columns of the 2× 2

matrix U are chosen to be the eigenvectors u1 and u2. or in the new coordinates
x̃, ỹ is
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.

d) Using the result in (b), find the solution of this linearised system corresponding to
the initial conditions x(0) = 3 +

√
2, y(0) = 3. Determine the tangent vector to the

trajectory of the solution at t = 0 and the values of x(t→∞) to this specified initial
condition. (5 marks)

Solution. From the general solution we have

y(t) = C1e
(2
√
2)t + C2e

(−2
√
2)t, ⇒ y(0) = C1 + C2 = 3

x(t) = (1+
√

2)C1e
(2
√
2)t+(1−

√
2)C2e

(−2
√
2)t, ⇒ x(0) = (C1+C2)+

√
2(C1−C2)

= 3 +
√

2(C1 − C2) = 3 +
√

2

which gives C1 = 2, C2 = 1. (2 marks).

( Note if using u1 =

(
1√

2− 1

)
and u2 =

(
1

−
√

2− 1

)
, then C1 = 2+2

√
2, C2 =

1−
√

2.)
Hence the trajectory of the solution is given by

x(t) = 2(1 +
√

2)e(2
√
2)t + (1−

√
2)e(−2

√
2)t,

y(t) = 2e(2
√
2)t + e(−2

√
2)t,

where both x and y increases over time and become positive infinity for t → ∞
(1 mark). The components of the initial tangent vector determining the speed of
increasing are given by ẋ(0) = 2(

√
2 + 6), ẏ(0) = 2

√
2 (2 mark).
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