What about order-reversing diffeomorphisms? Can they have periodic points which are not fixed points?

\[f(x) = -x \]

Here, 0 is the fixed point, and every other real number has prime period 2.
Proposition 1. If \(f : \mathbb{R} \to \mathbb{R} \) is an order-reversing diffeomorphism, then it has no points of prime period \(k \) with \(k \geq 2 \).

Proof. Since \(f \) is a diffeomorphism, so is \(f^2 \). Notice also that \(f^2 \) is order preserving because

\[
(f^2)'(x) = \frac{f'(f(x)) \cdot f'(x)}{<0 <0},
\]

and \(f' < 0 \) everywhere, so \(f'(f(x)) < 0 \) and \(f'(x) < 0 \), therefore \((f^2)'(x) > 0 \). By the previous Proposition, \(f^2 \) does not have any periodic points of prime period \(> 1 \).
i.e., there does not exist \(p \in \mathbb{R} \) such that \((f^2)^m(p) = p\), \(m > 1 \).

i.e. \(f^{2^m}(p) = p \), \(m > 1 \)

So \(f \) has no points of prime period \(2m \) for \(m > 1 \).

i.e. \(f \) has no prime period \(k \) points for even numbers \(k \).

To address the case where \(k \) is odd, we notice

\(f \) order-reversing diffeomorphism \(\implies f^k \) order-reversing diffeomorphism

But order-reversing diffeomorphisms have precisely one fixed point, so there exists a unique \(p \in \mathbb{R} \) with \(f(p) = p \), so also \(f^k(p) = p \).
Thus the unique fixed point for f^k is just the fixed point for f;
that is, the only period-k points for f are its fixed points, so in particular there are no points of prime period k for f. □

Summarising the situation for all diffeomorphisms $f : \mathbb{R} \to \mathbb{R}$:

| f order-preserving | Fixed Points | Prime period 2 | Prime period ≥ 2
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbitrary number</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>f order-reversing</td>
<td>Exactly One</td>
<td>Arbitrary Number</td>
<td>None</td>
</tr>
</tbody>
</table>

Fixed points and periodic points of continuous maps $f : \mathbb{R} \to \mathbb{R}$

Proposition Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. If f has an orbit of prime period 2 then it has a fixed point.

Proof Let $\{a, b\}$ be a 2-cycle of f, with $a < b$.

Then $f(a) = b$, and $f(b) = a$.

Let $g(x) = f(x) - x$, so that a zero of g is a fixed point of f.

Note that f is continuous on $[a, b]$, since it is continuous on the whole of \mathbb{R}.
Also $g(a) = f(a) - a$
\[= b - a > 0,\]
and $g(b) = f(b) - b$
\[= a - b < 0\]

By the Intermediate Value Theorem there exists $c \in (a, b)$ such that $g(c) = 0$, i.e., such that $f(c) = c$.

So f has a fixed point c, as required.

Remark This is an example of "forcing", i.e., presence of a periodic orbit of some type/period forces the presence of another type/orbit.
Perhaps the most famous result of this type is "Period-3 implies chaos", which more precisely states:

Theorem If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and has an orbit of prime period 3, then it has periodic orbits of all other prime periods n, $n \in \mathbb{N}$.