Due Thursday 18th October. Attempt answers to all questions.

Hand in your script to me during the lecture.

Field equations and symmetries [20 marks]

Problem 1

Consider the Lagrangian density for the two real scalar fields ϕ_1 and ϕ_2 given by

$$\mathcal{L} = \frac{1}{2}(\partial_\mu \phi_1)(\partial^\mu \phi_1) + \frac{1}{2}(\partial_\mu \phi_2)(\partial^\mu \phi_2) - \frac{m_1^2}{2}(\phi_1 \phi_1) - \frac{m_2^2}{2}(\phi_2 \phi_2) - g(\phi_1 \phi_2)^2.$$

Here g denotes a constant (called “coupling constant” as it couples the fields ϕ_1 and ϕ_2).

(i) Find the Euler-Lagrange equations for ϕ_1 and ϕ_2. \[3\]

Consider the infinitesimal transformation parameterised by the infinitesimal parameter ϵ

$$\delta \phi_1 = \epsilon \phi_2, \quad \delta \phi_2 = -\epsilon \phi_1.$$

(ii) Find the variation of \mathcal{L} under this transformation. Hint: remember to vary both ϕ and $\partial_\mu \phi$, for both fields! \[3\]

(iii) Find the most general set of values for the parameters m_1, m_2 and g such that this transformation is a symmetry of the Lagrangian. Note that in this case we do not touch the coordinates, hence effectively the request of symmetry

$$|J|L(\varphi'(x'), \partial'_\mu \varphi'(x')) = L(\varphi(x), \partial_\mu \varphi(x))$$

becomes

$$L(\varphi', \partial_\mu \varphi') = L(\varphi, \partial_\mu \varphi'),$$

or, infinitesimally, $\delta L = 0$ ($|J|$ is the Jacobian of the transformation of the coordinates). \[3\]

(iv) In the next lecture we will show that the “current” δJ^μ given by

$$\delta J^\mu := \sum_i \frac{\partial \mathcal{L}}{\partial (\partial_\mu \varphi_i)} \delta \varphi_i + \mathcal{L} \delta x^\mu$$

is conserved, which means that

$$\partial_\mu J^\mu = 0,$$
as a consequence of Noether’s theorem in field theory. The sum over i is extended to all fields in the theory, hence in this case ϕ_1 and ϕ_2 (also, for the particular transformation given in part (i), we have $\delta x^\mu = 0$).

For the choice of parameters identified in part (iii), write down the expression of the Noether current δJ^μ associated to this symmetry using the formula given above. [3]

(v) Check explicitly that $\partial_\mu J^\mu = 0$, upon using the equations of motion for the fields ϕ_1 and ϕ_2. [3]

(vi) [Optional question] Determine, with an explicit calculation, the form of the finite transformation corresponding to $\delta \phi_1, \delta \phi_2$ given above. What kind of transformation on (ϕ_1, ϕ_2) is this?

Hint: write the infinitesimal transformation as a matrix acting on the column vector $
\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}$ and exponentiate it.

Problem 2

Consider the following Lagrangian density, describing a massive vector field,

$$L = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{m^2}{2} A_\mu A^\mu.$$

(i) Write down the equations of motion for A_μ. [3]

(ii) Consider the transformation $A_\mu \rightarrow A_\mu + \partial_\mu \Omega$, where Ω is a function of the coordinates. How does the field strength $F_{\mu\nu}$ transform? Find also how the Lagrangian density L transforms. [2]